Analysis of spatiotemporal variability of C-factor derived from remote sensing data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F18%3A00488990" target="_blank" >RIV/86652079:_____/18:00488990 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/18:73587793
Výsledek na webu
<a href="http://dx.doi.org/10.1117/1.JRS.12.016022" target="_blank" >http://dx.doi.org/10.1117/1.JRS.12.016022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/1.JRS.12.016022" target="_blank" >10.1117/1.JRS.12.016022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of spatiotemporal variability of C-factor derived from remote sensing data
Popis výsledku v původním jazyce
Soil erosion is an important phenomenon that contributes to the degradation of agricultural land. Even though it is a natural process, human activities can significantly increase its impact on land degradation and present serious limitation on sustainable agricultural land use. Nowadays, the risk of soil erosion is assessed either qualitatively by expert assessment or quantitatively using model-based approach. One of the primary factors affecting the soil erosion assessment is a cover-management factor, C-factor. In the Czech Republic, several models are used to assess the C-factor on a long-term basis based on data collected using traditional tabular methods. This paper presents work to investigate the estimation of both long-term and short-term cover-management factors using remote sensing data. The results demonstrate a successful development of C-factor maps for each month of 2014, growing season average, and annual average for the Czech Republic. C-factor values calculated from remote sensing data confirmed expected trend in their temporal variability for selected crops. The results presented in this paper can be used for enhancing existing methods for estimating C-factor, planning future agricultural activities, and designing technical remediations and improvement activities of land use in the Czech Republic, which are also financially supported by the European Union funds. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
Název v anglickém jazyce
Analysis of spatiotemporal variability of C-factor derived from remote sensing data
Popis výsledku anglicky
Soil erosion is an important phenomenon that contributes to the degradation of agricultural land. Even though it is a natural process, human activities can significantly increase its impact on land degradation and present serious limitation on sustainable agricultural land use. Nowadays, the risk of soil erosion is assessed either qualitatively by expert assessment or quantitatively using model-based approach. One of the primary factors affecting the soil erosion assessment is a cover-management factor, C-factor. In the Czech Republic, several models are used to assess the C-factor on a long-term basis based on data collected using traditional tabular methods. This paper presents work to investigate the estimation of both long-term and short-term cover-management factors using remote sensing data. The results demonstrate a successful development of C-factor maps for each month of 2014, growing season average, and annual average for the Czech Republic. C-factor values calculated from remote sensing data confirmed expected trend in their temporal variability for selected crops. The results presented in this paper can be used for enhancing existing methods for estimating C-factor, planning future agricultural activities, and designing technical remediations and improvement activities of land use in the Czech Republic, which are also financially supported by the European Union funds. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 - Rozvoj Centra pro studium dopadů globální změny klimatu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Remote Sensing
ISSN
1931-3195
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000425805600002
EID výsledku v databázi Scopus
2-s2.0-85042448567