Multi-model evaluation of phenology prediction for wheat in Australia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00541707" target="_blank" >RIV/86652079:_____/21:00541707 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0168192320303919?token=71563322B19C1CFB4EC4F394E2F7AB03E1BF746E549DDA6CD4E51A684745D03615E9086C157DE496A4FA45C934C8453C&originRegion=eu-west-1&originCreation=20210414103656" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0168192320303919?token=71563322B19C1CFB4EC4F394E2F7AB03E1BF746E549DDA6CD4E51A684745D03615E9086C157DE496A4FA45C934C8453C&originRegion=eu-west-1&originCreation=20210414103656</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.agrformet.2020.108289" target="_blank" >10.1016/j.agrformet.2020.108289</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-model evaluation of phenology prediction for wheat in Australia
Popis výsledku v původním jazyce
Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.
Název v anglickém jazyce
Multi-model evaluation of phenology prediction for wheat in Australia
Popis výsledku anglicky
Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agricultural and Forest Meteorology
ISSN
0168-1923
e-ISSN
1873-2240
Svazek periodika
298
Číslo periodika v rámci svazku
MAR 15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
108289
Kód UT WoS článku
000610797100011
EID výsledku v databázi Scopus
2-s2.0-85098953804