Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-model evaluation of phenology prediction for wheat in Australia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00541707" target="_blank" >RIV/86652079:_____/21:00541707 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://reader.elsevier.com/reader/sd/pii/S0168192320303919?token=71563322B19C1CFB4EC4F394E2F7AB03E1BF746E549DDA6CD4E51A684745D03615E9086C157DE496A4FA45C934C8453C&originRegion=eu-west-1&originCreation=20210414103656" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0168192320303919?token=71563322B19C1CFB4EC4F394E2F7AB03E1BF746E549DDA6CD4E51A684745D03615E9086C157DE496A4FA45C934C8453C&originRegion=eu-west-1&originCreation=20210414103656</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.agrformet.2020.108289" target="_blank" >10.1016/j.agrformet.2020.108289</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-model evaluation of phenology prediction for wheat in Australia

  • Popis výsledku v původním jazyce

    Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.

  • Název v anglickém jazyce

    Multi-model evaluation of phenology prediction for wheat in Australia

  • Popis výsledku anglicky

    Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Agricultural and Forest Meteorology

  • ISSN

    0168-1923

  • e-ISSN

    1873-2240

  • Svazek periodika

    298

  • Číslo periodika v rámci svazku

    MAR 15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    108289

  • Kód UT WoS článku

    000610797100011

  • EID výsledku v databázi Scopus

    2-s2.0-85098953804