How well do crop modeling groups predict wheat phenology, given calibration data from the target population?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00542571" target="_blank" >RIV/86652079:_____/21:00542571 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1161030120302021?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1161030120302021?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eja.2020.126195" target="_blank" >10.1016/j.eja.2020.126195</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How well do crop modeling groups predict wheat phenology, given calibration data from the target population?
Popis výsledku v původním jazyce
Predicting phenology is essential for adapting varieties to different environmental conditions and for crop management. Therefore, it is important to evaluate how well different crop modeling groups can predict phenology. Multiple evaluation studies have been previously published, but it is still difficult to generalize the findings from such studies since they often test some specific aspect of extrapolation to new conditions, or do not test on data that is truly independent of the data used for calibration. In this study, we analyzed the prediction of wheat phenology in Northern France under observed weather and current management, which is a problem of practical importance for wheat management. The results of 27 modeling groups are evaluated, where modeling group encompasses model structure, i.e. the model equations, the calibration method and the values of those parameters not affected by calibration. The data for calibration and evaluation are sampled from the same target population, thus extrapolation is limited. The calibration and evaluation data have neither year nor site in common, to guarantee rigorous evaluation of prediction for new weather and sites. The best modeling groups, and also the mean and median of the simulations, have a mean absolute error (MAE) of about 3 days, which is comparable to the measurement error. Almost all models do better than using average number of days or average sum of degree days to predict phenology. On the other hand, there are important differences between modeling groups, due to model structural differences and to differences between groups using the same model structure, which emphasizes that model structure alone does not completely determine prediction accuracy. In addition to providing information for our specific environments and varieties, these results are a useful contribution to a knowledge base of how well modeling groups can predict phenology, when provided with calibration data from the target population.
Název v anglickém jazyce
How well do crop modeling groups predict wheat phenology, given calibration data from the target population?
Popis výsledku anglicky
Predicting phenology is essential for adapting varieties to different environmental conditions and for crop management. Therefore, it is important to evaluate how well different crop modeling groups can predict phenology. Multiple evaluation studies have been previously published, but it is still difficult to generalize the findings from such studies since they often test some specific aspect of extrapolation to new conditions, or do not test on data that is truly independent of the data used for calibration. In this study, we analyzed the prediction of wheat phenology in Northern France under observed weather and current management, which is a problem of practical importance for wheat management. The results of 27 modeling groups are evaluated, where modeling group encompasses model structure, i.e. the model equations, the calibration method and the values of those parameters not affected by calibration. The data for calibration and evaluation are sampled from the same target population, thus extrapolation is limited. The calibration and evaluation data have neither year nor site in common, to guarantee rigorous evaluation of prediction for new weather and sites. The best modeling groups, and also the mean and median of the simulations, have a mean absolute error (MAE) of about 3 days, which is comparable to the measurement error. Almost all models do better than using average number of days or average sum of degree days to predict phenology. On the other hand, there are important differences between modeling groups, due to model structural differences and to differences between groups using the same model structure, which emphasizes that model structure alone does not completely determine prediction accuracy. In addition to providing information for our specific environments and varieties, these results are a useful contribution to a knowledge base of how well modeling groups can predict phenology, when provided with calibration data from the target population.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40401 - Agricultural biotechnology and food biotechnology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Agronomy
ISSN
1161-0301
e-ISSN
1873-7331
Svazek periodika
124
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
126195
Kód UT WoS článku
000620810400008
EID výsledku v databázi Scopus
2-s2.0-85098937603