Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00542554" target="_blank" >RIV/86652079:_____/21:00542554 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data" target="_blank" >https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15196/RS110105" target="_blank" >10.15196/RS110105</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data

  • Popis výsledku v původním jazyce

    Principal Component Analysis (PCA) is a widely applied statistical technique aimed at summarising a multidimensional set of input (partly redundant) variables into a restricted number of independent components that are linear combinations of the inputs. PCA transforms the original data matrix by performing a spectral decomposition of the related variance/covariance (or correlation) matrix. When decomposing a correlation matrix, Pearson product-moment correlation coefficients are traditionally used in the correlation matrix. The statistical properties of Pearson correlation coefficients (being insensitive to non-linear, high-order correlations) represent an intrinsic limitation of PCA, restricting its applicability to linear relationships among inputs. However, working with variables displaying (more or less intense) deviations from linearity is common in both socioeconomic research and environmental studies. Following the theoretical assumptions of earlier studies, a generalisation of PCA aimed at exploring non-linear multivariate relationships among inputs is illustrated in the present article by using non-parametric Spearman and Kendall coefficients to replace linear Pearson coefficients in the correlation matrix. The per cent share of 19 land-use classes in the total landscape in a given study area (the Athens metropolitan region, Greece), obtained from a high-resolution map at the local scale, were used as inputs. The results of the standard PCA (via decomposition of a Pearson linear correlation matrix) and a generalised approach (via decomposition of a non-parametric correlation matrix based on Spearman or Kendall rank coefficients) were compared using traditional diagnostics. The PCA performed by decomposing a Spearman correlation matrix exhibited the highest variance extracted by the principal components, giving refined loadings and scores that allow recognition of latent land-use patterns. Contributing to a recent debate on the use of multidimensional techniques in regional studies, non-parametric approaches are promising tools for analysis of large datasets displaying complex, almost non-linear relationships among inputs.

  • Název v anglickém jazyce

    Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data

  • Popis výsledku anglicky

    Principal Component Analysis (PCA) is a widely applied statistical technique aimed at summarising a multidimensional set of input (partly redundant) variables into a restricted number of independent components that are linear combinations of the inputs. PCA transforms the original data matrix by performing a spectral decomposition of the related variance/covariance (or correlation) matrix. When decomposing a correlation matrix, Pearson product-moment correlation coefficients are traditionally used in the correlation matrix. The statistical properties of Pearson correlation coefficients (being insensitive to non-linear, high-order correlations) represent an intrinsic limitation of PCA, restricting its applicability to linear relationships among inputs. However, working with variables displaying (more or less intense) deviations from linearity is common in both socioeconomic research and environmental studies. Following the theoretical assumptions of earlier studies, a generalisation of PCA aimed at exploring non-linear multivariate relationships among inputs is illustrated in the present article by using non-parametric Spearman and Kendall coefficients to replace linear Pearson coefficients in the correlation matrix. The per cent share of 19 land-use classes in the total landscape in a given study area (the Athens metropolitan region, Greece), obtained from a high-resolution map at the local scale, were used as inputs. The results of the standard PCA (via decomposition of a Pearson linear correlation matrix) and a generalised approach (via decomposition of a non-parametric correlation matrix based on Spearman or Kendall rank coefficients) were compared using traditional diagnostics. The PCA performed by decomposing a Spearman correlation matrix exhibited the highest variance extracted by the principal components, giving refined loadings and scores that allow recognition of latent land-use patterns. Contributing to a recent debate on the use of multidimensional techniques in regional studies, non-parametric approaches are promising tools for analysis of large datasets displaying complex, almost non-linear relationships among inputs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Regional Statistics

  • ISSN

    2063-9538

  • e-ISSN

    2064-8243

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    HU - Maďarsko

  • Počet stran výsledku

    16

  • Strana od-do

    25-41

  • Kód UT WoS článku

    000613906400002

  • EID výsledku v databázi Scopus

    2-s2.0-85101932836