Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00542554" target="_blank" >RIV/86652079:_____/21:00542554 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data" target="_blank" >https://www.academia.edu/44560921/Exploring_non_linear_relationships_among_redundant_variables_through_non_parametric_principal_component_analysis_An_empirical_analysis_with_land_use_data</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15196/RS110105" target="_blank" >10.15196/RS110105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data
Popis výsledku v původním jazyce
Principal Component Analysis (PCA) is a widely applied statistical technique aimed at summarising a multidimensional set of input (partly redundant) variables into a restricted number of independent components that are linear combinations of the inputs. PCA transforms the original data matrix by performing a spectral decomposition of the related variance/covariance (or correlation) matrix. When decomposing a correlation matrix, Pearson product-moment correlation coefficients are traditionally used in the correlation matrix. The statistical properties of Pearson correlation coefficients (being insensitive to non-linear, high-order correlations) represent an intrinsic limitation of PCA, restricting its applicability to linear relationships among inputs. However, working with variables displaying (more or less intense) deviations from linearity is common in both socioeconomic research and environmental studies. Following the theoretical assumptions of earlier studies, a generalisation of PCA aimed at exploring non-linear multivariate relationships among inputs is illustrated in the present article by using non-parametric Spearman and Kendall coefficients to replace linear Pearson coefficients in the correlation matrix. The per cent share of 19 land-use classes in the total landscape in a given study area (the Athens metropolitan region, Greece), obtained from a high-resolution map at the local scale, were used as inputs. The results of the standard PCA (via decomposition of a Pearson linear correlation matrix) and a generalised approach (via decomposition of a non-parametric correlation matrix based on Spearman or Kendall rank coefficients) were compared using traditional diagnostics. The PCA performed by decomposing a Spearman correlation matrix exhibited the highest variance extracted by the principal components, giving refined loadings and scores that allow recognition of latent land-use patterns. Contributing to a recent debate on the use of multidimensional techniques in regional studies, non-parametric approaches are promising tools for analysis of large datasets displaying complex, almost non-linear relationships among inputs.
Název v anglickém jazyce
Exploring non-linear relationships among redundant variables through non-parametric principal component analysis: An empirical analysis with land-use data
Popis výsledku anglicky
Principal Component Analysis (PCA) is a widely applied statistical technique aimed at summarising a multidimensional set of input (partly redundant) variables into a restricted number of independent components that are linear combinations of the inputs. PCA transforms the original data matrix by performing a spectral decomposition of the related variance/covariance (or correlation) matrix. When decomposing a correlation matrix, Pearson product-moment correlation coefficients are traditionally used in the correlation matrix. The statistical properties of Pearson correlation coefficients (being insensitive to non-linear, high-order correlations) represent an intrinsic limitation of PCA, restricting its applicability to linear relationships among inputs. However, working with variables displaying (more or less intense) deviations from linearity is common in both socioeconomic research and environmental studies. Following the theoretical assumptions of earlier studies, a generalisation of PCA aimed at exploring non-linear multivariate relationships among inputs is illustrated in the present article by using non-parametric Spearman and Kendall coefficients to replace linear Pearson coefficients in the correlation matrix. The per cent share of 19 land-use classes in the total landscape in a given study area (the Athens metropolitan region, Greece), obtained from a high-resolution map at the local scale, were used as inputs. The results of the standard PCA (via decomposition of a Pearson linear correlation matrix) and a generalised approach (via decomposition of a non-parametric correlation matrix based on Spearman or Kendall rank coefficients) were compared using traditional diagnostics. The PCA performed by decomposing a Spearman correlation matrix exhibited the highest variance extracted by the principal components, giving refined loadings and scores that allow recognition of latent land-use patterns. Contributing to a recent debate on the use of multidimensional techniques in regional studies, non-parametric approaches are promising tools for analysis of large datasets displaying complex, almost non-linear relationships among inputs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Regional Statistics
ISSN
2063-9538
e-ISSN
2064-8243
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
16
Strana od-do
25-41
Kód UT WoS článku
000613906400002
EID výsledku v databázi Scopus
2-s2.0-85101932836