Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00559877" target="_blank" >RIV/86652079:_____/22:00559877 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11119-022-09893-4" target="_blank" >https://link.springer.com/article/10.1007/s11119-022-09893-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11119-022-09893-4" target="_blank" >10.1007/s11119-022-09893-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods
Popis výsledku v původním jazyce
Leaf area index (LAI) is a key variable in understanding and modeling crop-environment interactions. With the advent of increasingly higher spatial resolution satellites and sensors mounted on remotely piloted aircrafts (RPAs), the use of remote sensing in precision agriculture is becoming more common. Since also the availability of methods to retrieve LAI from image data have also drastically expanded, it is necessary to test simultaneously as many methods as possible to understand the advantages and disadvantages of each approach. Ground-based LAI data from three years of barley experiments were related to remote sensing information using vegetation indices (VI), machine learning (ML) and radiative transfer models (RTM), to assess the relative accuracy and efficacy of these methods. The optimized soil adjusted vegetation index and a modified version of the Weighted Difference Vegetation Index performed slightly better than any other retrieval method. However, all methods yielded coefficients of determination of around 0.7 to 0.9. The best performing machine learning algorithms achieved higher accuracies when four Sentinel-2 bands instead of 12 were used. Also, the good performance of VIs and the satisfactory performance of the 4-band RTM, strongly support the synergistic use of satellites and RPAs in precision agriculture. One of the methods used, Sen2-Agri, an open source ML-RTM-based operational system, was also able to accurately retrieve LAI, although it is restricted to Sentinel-2 and Landsat data. This study shows the benefits of testing simultaneously a broad range of retrieval methods to monitor crops for precision agriculture.
Název v anglickém jazyce
Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods
Popis výsledku anglicky
Leaf area index (LAI) is a key variable in understanding and modeling crop-environment interactions. With the advent of increasingly higher spatial resolution satellites and sensors mounted on remotely piloted aircrafts (RPAs), the use of remote sensing in precision agriculture is becoming more common. Since also the availability of methods to retrieve LAI from image data have also drastically expanded, it is necessary to test simultaneously as many methods as possible to understand the advantages and disadvantages of each approach. Ground-based LAI data from three years of barley experiments were related to remote sensing information using vegetation indices (VI), machine learning (ML) and radiative transfer models (RTM), to assess the relative accuracy and efficacy of these methods. The optimized soil adjusted vegetation index and a modified version of the Weighted Difference Vegetation Index performed slightly better than any other retrieval method. However, all methods yielded coefficients of determination of around 0.7 to 0.9. The best performing machine learning algorithms achieved higher accuracies when four Sentinel-2 bands instead of 12 were used. Also, the good performance of VIs and the satisfactory performance of the 4-band RTM, strongly support the synergistic use of satellites and RPAs in precision agriculture. One of the methods used, Sen2-Agri, an open source ML-RTM-based operational system, was also able to accurately retrieve LAI, although it is restricted to Sentinel-2 and Landsat data. This study shows the benefits of testing simultaneously a broad range of retrieval methods to monitor crops for precision agriculture.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Precision Agriculture
ISSN
1385-2256
e-ISSN
1573-1618
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
1449-1472
Kód UT WoS článku
000767905400001
EID výsledku v databázi Scopus
2-s2.0-85126116428