Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00572902" target="_blank" >RIV/86652079:_____/23:00572902 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/23:00131110 RIV/00216208:11310/23:10468045
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/01431161.2023.2216847?scroll=top&needAccess=true&role=tab" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/01431161.2023.2216847?scroll=top&needAccess=true&role=tab</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/01431161.2023.2216847" target="_blank" >10.1080/01431161.2023.2216847</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods
Popis výsledku v původním jazyce
Plant functional traits (e.g. leaf pigment and water contents, specific leaf area) serve as important indicators of plant condition, both within a given vegetation season and between years. Remote sensing-based methods allow for non-destructive and repeatable monitoring of the Earth's surface and thus offer an efficient way to map and monitor these traits. In our study, we used a large database of ground survey data sampled at several contrasting phenological phases of vegetation to develop and compare different machine learning models trained to estimate selected plant functional traits at two different sites: mixed floodplain forest at Lanzhot and beech forest at Stitna, both in the Czech Republic. Empirical models were trained as predictors using 1) Sentinel-2 satellite data (a data set with higher spatial and spectral resolution), and 2) Harmonized Landsat Sentinel-2 (HLS) product (a data set with higher temporal resolution). The most successfully retrieved traits were chlorophyll and carotenoid content (R-2 = 0.78 and 0.65, respectively). Although models trained with Sentinel-2 predictors proved to be slightly better in terms of validation statistics compared to HLS predictors, the HLS product may be preferable for some applications requiring analysis at a high frequency. The best-performing machine learning algorithm, canonical correlation forest, was then applied per pixel to all cloud-free images from the HLS product at both study sites for the years 2019-2021. This allowed us to create a time series of plant functional traits useful for observing differences between the two sites, as well as between growing seasons, and also to observe patterns of spatial behaviour using map outputs.
Název v anglickém jazyce
Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods
Popis výsledku anglicky
Plant functional traits (e.g. leaf pigment and water contents, specific leaf area) serve as important indicators of plant condition, both within a given vegetation season and between years. Remote sensing-based methods allow for non-destructive and repeatable monitoring of the Earth's surface and thus offer an efficient way to map and monitor these traits. In our study, we used a large database of ground survey data sampled at several contrasting phenological phases of vegetation to develop and compare different machine learning models trained to estimate selected plant functional traits at two different sites: mixed floodplain forest at Lanzhot and beech forest at Stitna, both in the Czech Republic. Empirical models were trained as predictors using 1) Sentinel-2 satellite data (a data set with higher spatial and spectral resolution), and 2) Harmonized Landsat Sentinel-2 (HLS) product (a data set with higher temporal resolution). The most successfully retrieved traits were chlorophyll and carotenoid content (R-2 = 0.78 and 0.65, respectively). Although models trained with Sentinel-2 predictors proved to be slightly better in terms of validation statistics compared to HLS predictors, the HLS product may be preferable for some applications requiring analysis at a high frequency. The best-performing machine learning algorithm, canonical correlation forest, was then applied per pixel to all cloud-free images from the HLS product at both study sites for the years 2019-2021. This allowed us to create a time series of plant functional traits useful for observing differences between the two sites, as well as between growing seasons, and also to observe patterns of spatial behaviour using map outputs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA18154" target="_blank" >LTAUSA18154: Hodnocení funkce ekosystémů na základě sledování kvantitativních parametrů vegetace z dat dálkového průzkumu Země vysokého prostorového, spektrálního a časového rozlišení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Remote Sensing
ISSN
0143-1161
e-ISSN
1366-5901
Svazek periodika
44
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
3083-3105
Kód UT WoS článku
000997638600001
EID výsledku v databázi Scopus
2-s2.0-85162070165