Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00572902" target="_blank" >RIV/86652079:_____/23:00572902 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/23:00131110 RIV/00216208:11310/23:10468045

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/01431161.2023.2216847?scroll=top&needAccess=true&role=tab" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/01431161.2023.2216847?scroll=top&needAccess=true&role=tab</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/01431161.2023.2216847" target="_blank" >10.1080/01431161.2023.2216847</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods

  • Popis výsledku v původním jazyce

    Plant functional traits (e.g. leaf pigment and water contents, specific leaf area) serve as important indicators of plant condition, both within a given vegetation season and between years. Remote sensing-based methods allow for non-destructive and repeatable monitoring of the Earth's surface and thus offer an efficient way to map and monitor these traits. In our study, we used a large database of ground survey data sampled at several contrasting phenological phases of vegetation to develop and compare different machine learning models trained to estimate selected plant functional traits at two different sites: mixed floodplain forest at Lanzhot and beech forest at Stitna, both in the Czech Republic. Empirical models were trained as predictors using 1) Sentinel-2 satellite data (a data set with higher spatial and spectral resolution), and 2) Harmonized Landsat Sentinel-2 (HLS) product (a data set with higher temporal resolution). The most successfully retrieved traits were chlorophyll and carotenoid content (R-2 = 0.78 and 0.65, respectively). Although models trained with Sentinel-2 predictors proved to be slightly better in terms of validation statistics compared to HLS predictors, the HLS product may be preferable for some applications requiring analysis at a high frequency. The best-performing machine learning algorithm, canonical correlation forest, was then applied per pixel to all cloud-free images from the HLS product at both study sites for the years 2019-2021. This allowed us to create a time series of plant functional traits useful for observing differences between the two sites, as well as between growing seasons, and also to observe patterns of spatial behaviour using map outputs.

  • Název v anglickém jazyce

    Retrieving plant functional traits through time series analysis of satellite observations using machine learning methods

  • Popis výsledku anglicky

    Plant functional traits (e.g. leaf pigment and water contents, specific leaf area) serve as important indicators of plant condition, both within a given vegetation season and between years. Remote sensing-based methods allow for non-destructive and repeatable monitoring of the Earth's surface and thus offer an efficient way to map and monitor these traits. In our study, we used a large database of ground survey data sampled at several contrasting phenological phases of vegetation to develop and compare different machine learning models trained to estimate selected plant functional traits at two different sites: mixed floodplain forest at Lanzhot and beech forest at Stitna, both in the Czech Republic. Empirical models were trained as predictors using 1) Sentinel-2 satellite data (a data set with higher spatial and spectral resolution), and 2) Harmonized Landsat Sentinel-2 (HLS) product (a data set with higher temporal resolution). The most successfully retrieved traits were chlorophyll and carotenoid content (R-2 = 0.78 and 0.65, respectively). Although models trained with Sentinel-2 predictors proved to be slightly better in terms of validation statistics compared to HLS predictors, the HLS product may be preferable for some applications requiring analysis at a high frequency. The best-performing machine learning algorithm, canonical correlation forest, was then applied per pixel to all cloud-free images from the HLS product at both study sites for the years 2019-2021. This allowed us to create a time series of plant functional traits useful for observing differences between the two sites, as well as between growing seasons, and also to observe patterns of spatial behaviour using map outputs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAUSA18154" target="_blank" >LTAUSA18154: Hodnocení funkce ekosystémů na základě sledování kvantitativních parametrů vegetace z dat dálkového průzkumu Země vysokého prostorového, spektrálního a časového rozlišení</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Remote Sensing

  • ISSN

    0143-1161

  • e-ISSN

    1366-5901

  • Svazek periodika

    44

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    3083-3105

  • Kód UT WoS článku

    000997638600001

  • EID výsledku v databázi Scopus

    2-s2.0-85162070165