Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00602202" target="_blank" >RIV/86652079:_____/24:00602202 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/24:00137665

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352340924010679?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340924010679?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dib.2024.111105" target="_blank" >10.1016/j.dib.2024.111105</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests

  • Popis výsledku v původním jazyce

    Accurate retrieval of forest functional traits from remote sensing data is critical for monitoring forest health and productivity. To achieve sufficient accuracy using inverse methods it is essential to have representative database of simulated or measured spectral properties together with corresponding forest traits. However, existing datasets are often limited in scope, covering specific sites and times with simplified structures. This limitation hinders the development of generalizable machine learning models for trait prediction. To address this issue, we present a comprehensive highresolution dataset of hyperspectral Look-Up Tables (LUT) designed for Central European temperate broadleaf forests. The dataset includes 3.5 million unique combinations of leaf biochemical and canopy structural characteristics of forest scenes together with a variety of sun geometry. The spectral data cover wavelengths from 450 nm to 2300 nm, with a resolution of 2 nm. The dataset is organised into two files: one capturing the average reflectance of all scene pixels and another focusing solely on sunlit leaf pixels. LUT were generated using the Discrete Anisotropic Radiative Transfer model version 5.10.0. Virtual forest scenes were based on 3D tree European beech trees, adjusted to various leaf area index values and structural configurations to simulate natural forest variability. The reflectance data were processed using MATLAB and Python scripts, resulting in hyperspectral cubes that The dataset can be used to train machine learning models, such as Random Forest and Support Vector Machines, for predicting forest functional traits and assisting in the calibration of remote sensing algorithms. The biggest advantage of the dataset is high spectral and spatial resolution, together with the high number of different trait combinaThis is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

  • Název v anglickém jazyce

    High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests

  • Popis výsledku anglicky

    Accurate retrieval of forest functional traits from remote sensing data is critical for monitoring forest health and productivity. To achieve sufficient accuracy using inverse methods it is essential to have representative database of simulated or measured spectral properties together with corresponding forest traits. However, existing datasets are often limited in scope, covering specific sites and times with simplified structures. This limitation hinders the development of generalizable machine learning models for trait prediction. To address this issue, we present a comprehensive highresolution dataset of hyperspectral Look-Up Tables (LUT) designed for Central European temperate broadleaf forests. The dataset includes 3.5 million unique combinations of leaf biochemical and canopy structural characteristics of forest scenes together with a variety of sun geometry. The spectral data cover wavelengths from 450 nm to 2300 nm, with a resolution of 2 nm. The dataset is organised into two files: one capturing the average reflectance of all scene pixels and another focusing solely on sunlit leaf pixels. LUT were generated using the Discrete Anisotropic Radiative Transfer model version 5.10.0. Virtual forest scenes were based on 3D tree European beech trees, adjusted to various leaf area index values and structural configurations to simulate natural forest variability. The reflectance data were processed using MATLAB and Python scripts, resulting in hyperspectral cubes that The dataset can be used to train machine learning models, such as Random Forest and Support Vector Machines, for predicting forest functional traits and assisting in the calibration of remote sensing algorithms. The biggest advantage of the dataset is high spectral and spatial resolution, together with the high number of different trait combinaThis is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004635" target="_blank" >EH22_008/0004635: AdAgriF - Pokročilé metody redukce emisí a sekvestrace skleníkových plynů v zemědělské a lesní krajině pro mitigaci změny klimatu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Data in Brief

  • ISSN

    2352-3409

  • e-ISSN

    2352-3409

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    DEC

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    111105

  • Kód UT WoS článku

    001359597600001

  • EID výsledku v databázi Scopus

    2-s2.0-85209147920