High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00602202" target="_blank" >RIV/86652079:_____/24:00602202 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00137665
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352340924010679?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340924010679?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2024.111105" target="_blank" >10.1016/j.dib.2024.111105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests
Popis výsledku v původním jazyce
Accurate retrieval of forest functional traits from remote sensing data is critical for monitoring forest health and productivity. To achieve sufficient accuracy using inverse methods it is essential to have representative database of simulated or measured spectral properties together with corresponding forest traits. However, existing datasets are often limited in scope, covering specific sites and times with simplified structures. This limitation hinders the development of generalizable machine learning models for trait prediction. To address this issue, we present a comprehensive highresolution dataset of hyperspectral Look-Up Tables (LUT) designed for Central European temperate broadleaf forests. The dataset includes 3.5 million unique combinations of leaf biochemical and canopy structural characteristics of forest scenes together with a variety of sun geometry. The spectral data cover wavelengths from 450 nm to 2300 nm, with a resolution of 2 nm. The dataset is organised into two files: one capturing the average reflectance of all scene pixels and another focusing solely on sunlit leaf pixels. LUT were generated using the Discrete Anisotropic Radiative Transfer model version 5.10.0. Virtual forest scenes were based on 3D tree European beech trees, adjusted to various leaf area index values and structural configurations to simulate natural forest variability. The reflectance data were processed using MATLAB and Python scripts, resulting in hyperspectral cubes that The dataset can be used to train machine learning models, such as Random Forest and Support Vector Machines, for predicting forest functional traits and assisting in the calibration of remote sensing algorithms. The biggest advantage of the dataset is high spectral and spatial resolution, together with the high number of different trait combinaThis is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Název v anglickém jazyce
High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests
Popis výsledku anglicky
Accurate retrieval of forest functional traits from remote sensing data is critical for monitoring forest health and productivity. To achieve sufficient accuracy using inverse methods it is essential to have representative database of simulated or measured spectral properties together with corresponding forest traits. However, existing datasets are often limited in scope, covering specific sites and times with simplified structures. This limitation hinders the development of generalizable machine learning models for trait prediction. To address this issue, we present a comprehensive highresolution dataset of hyperspectral Look-Up Tables (LUT) designed for Central European temperate broadleaf forests. The dataset includes 3.5 million unique combinations of leaf biochemical and canopy structural characteristics of forest scenes together with a variety of sun geometry. The spectral data cover wavelengths from 450 nm to 2300 nm, with a resolution of 2 nm. The dataset is organised into two files: one capturing the average reflectance of all scene pixels and another focusing solely on sunlit leaf pixels. LUT were generated using the Discrete Anisotropic Radiative Transfer model version 5.10.0. Virtual forest scenes were based on 3D tree European beech trees, adjusted to various leaf area index values and structural configurations to simulate natural forest variability. The reflectance data were processed using MATLAB and Python scripts, resulting in hyperspectral cubes that The dataset can be used to train machine learning models, such as Random Forest and Support Vector Machines, for predicting forest functional traits and assisting in the calibration of remote sensing algorithms. The biggest advantage of the dataset is high spectral and spatial resolution, together with the high number of different trait combinaThis is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004635" target="_blank" >EH22_008/0004635: AdAgriF - Pokročilé metody redukce emisí a sekvestrace skleníkových plynů v zemědělské a lesní krajině pro mitigaci změny klimatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
2352-3409
Svazek periodika
57
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
111105
Kód UT WoS článku
001359597600001
EID výsledku v databázi Scopus
2-s2.0-85209147920