Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00574223" target="_blank" >RIV/86652079:_____/23:00574223 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S003442572300161X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S003442572300161X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rse.2023.113610" target="_blank" >10.1016/j.rse.2023.113610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance
Popis výsledku v původním jazyce
Forest floor vegetation can account for a notable fraction of forest productivity and species diversity, and the composition of forest floor vegetation is an important indicator of site type. The signal from the forest floor influences the interpretation of optical remote sensing (RS) data. Retrieval of forest floor reflectance properties has commonly been investigated with multiangular RS data, which often have a coarse spatial resolution. We developed a method that utilizes a forest reflectance model based on photon recollision probability to retrieve forest floor reflectance from near-nadir data. The method was tested in boreal, hemiboreal, and temperate forests in Europe, with hemispherical photos and airborne LiDAR as alternative data sources to provide forest canopy structural information. These two data sources showed comparable performance, thus demonstrating the value of using airborne LiDAR as the structural reflectance model input to derive wall-to-wall maps of forest floor reflectance. We derived such maps from multispectral Sentinel-2 MSI and hyperspectral PRISMA satellite images for a boreal forest site. The validation against in situ measurements showed fairly good performance of the retrievals in sparse forests (that had effective plant area index less than 2). In dense forests, the retrievals were less accurate, due to the small contribution of forest floor to the RS signal. We also demonstrated the use of the method in monitoring the recovery of forest floor vegetation after a thinning disturbance. The reflectance model that we used is computationally efficient, making it well applicable also to data from new and forthcoming hyperspectral satellite missions.
Název v anglickém jazyce
Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance
Popis výsledku anglicky
Forest floor vegetation can account for a notable fraction of forest productivity and species diversity, and the composition of forest floor vegetation is an important indicator of site type. The signal from the forest floor influences the interpretation of optical remote sensing (RS) data. Retrieval of forest floor reflectance properties has commonly been investigated with multiangular RS data, which often have a coarse spatial resolution. We developed a method that utilizes a forest reflectance model based on photon recollision probability to retrieve forest floor reflectance from near-nadir data. The method was tested in boreal, hemiboreal, and temperate forests in Europe, with hemispherical photos and airborne LiDAR as alternative data sources to provide forest canopy structural information. These two data sources showed comparable performance, thus demonstrating the value of using airborne LiDAR as the structural reflectance model input to derive wall-to-wall maps of forest floor reflectance. We derived such maps from multispectral Sentinel-2 MSI and hyperspectral PRISMA satellite images for a boreal forest site. The validation against in situ measurements showed fairly good performance of the retrievals in sparse forests (that had effective plant area index less than 2). In dense forests, the retrievals were less accurate, due to the small contribution of forest floor to the RS signal. We also demonstrated the use of the method in monitoring the recovery of forest floor vegetation after a thinning disturbance. The reflectance model that we used is computationally efficient, making it well applicable also to data from new and forthcoming hyperspectral satellite missions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023048" target="_blank" >LM2023048: Česká infrastruktura sledování uhlíku</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing of Environment
ISSN
0034-4257
e-ISSN
1879-0704
Svazek periodika
293
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
113610
Kód UT WoS článku
001033104700001
EID výsledku v databázi Scopus
2-s2.0-85158862918