GPACDA: circRNA-disease association prediction with generating polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023736%3A_____%2F24%3A00013712" target="_blank" >RIV/00023736:_____/24:00013712 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-64629-4_3" target="_blank" >https://doi.org/10.1007/978-3-031-64629-4_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-64629-4_3" target="_blank" >10.1007/978-3-031-64629-4_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPACDA: circRNA-disease association prediction with generating polynomials
Popis výsledku v původním jazyce
Circular RNA, a molecule with partially understood functions, has been implicated in various diseases. Therefore, there is a vast effort to predict associations between circular RNAs and diseases. In our recent study, we introduced circGPA, an algorithm that enables the annotation of circular RNAs with gene ontology terms through interactions with miRNAs and mRNAs. Recognizing the analytical similarity in predicting disease associations, we developed GPACDA, an extension of circGPA tailored for disease associations. The benefits of our methods include explainability, as the outputs are based on known interactions and associations, as well as the rigorous calculation of the p-value, which the circGPA algorithm can compute. We compared our method with two other tools, NCPCDA and DWNCPCDA, using a subset of the CDASOR dataset and showed that GPACDA overcomes its competitors in terms of true association ranks. Our method’s code and predictions are publicly accessible.
Název v anglickém jazyce
GPACDA: circRNA-disease association prediction with generating polynomials
Popis výsledku anglicky
Circular RNA, a molecule with partially understood functions, has been implicated in various diseases. Therefore, there is a vast effort to predict associations between circular RNAs and diseases. In our recent study, we introduced circGPA, an algorithm that enables the annotation of circular RNAs with gene ontology terms through interactions with miRNAs and mRNAs. Recognizing the analytical similarity in predicting disease associations, we developed GPACDA, an extension of circGPA tailored for disease associations. The benefits of our methods include explainability, as the outputs are based on known interactions and associations, as well as the rigorous calculation of the p-value, which the circGPA algorithm can compute. We compared our method with two other tools, NCPCDA and DWNCPCDA, using a subset of the CDASOR dataset and showed that GPACDA overcomes its competitors in terms of true association ranks. Our method’s code and predictions are publicly accessible.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
30205 - Hematology
Návaznosti výsledku
Projekt
<a href="/cs/project/NU20-03-00412" target="_blank" >NU20-03-00412: Role transpozibilních elementů a PIWI-interagujících RNA u myelodysplastického syndromu a jejich možné klinické využití</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-303164628-7
Počet stran výsledku
16
Strana od-do
33-48
Počet stran knihy
337
Název nakladatele
Springer Verlag
Místo vydání
Berlin
Kód UT WoS kapitoly
—