Causal network discovery by iterative conditioning: Comparison of algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920249" target="_blank" >RIV/00023752:_____/20:43920249 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/20:00520385 RIV/68407700:21340/20:00337425
Výsledek na webu
<a href="https://aip.scitation.org/doi/full/10.1063/1.5115267" target="_blank" >https://aip.scitation.org/doi/full/10.1063/1.5115267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5115267" target="_blank" >10.1063/1.5115267</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Causal network discovery by iterative conditioning: Comparison of algorithms
Popis výsledku v původním jazyce
Estimating causal interactions in complex dynamical systems is an important problem encountered in many elds of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it gener- ally requires the computation of high-dimensional information functionals—a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for the assessment of con- ditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework and by numerical simulations including realistic complex cou- pling patterns. The theoretical analysis highlights the key similarities and dierences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specic properties such as false positive control and order-dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial dierences in their computational demands, ranging theoretically from polynomial to exponential complexity and leading to substantial dierences in computation time in realistic scenarios depending on the density and size of networks. Based on the analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational eciency.
Název v anglickém jazyce
Causal network discovery by iterative conditioning: Comparison of algorithms
Popis výsledku anglicky
Estimating causal interactions in complex dynamical systems is an important problem encountered in many elds of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it gener- ally requires the computation of high-dimensional information functionals—a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for the assessment of con- ditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework and by numerical simulations including realistic complex cou- pling patterns. The theoretical analysis highlights the key similarities and dierences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specic properties such as false positive control and order-dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial dierences in their computational demands, ranging theoretically from polynomial to exponential complexity and leading to substantial dierences in computation time in realistic scenarios depending on the density and size of networks. Based on the analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational eciency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"Article Number: 013117"
Kód UT WoS článku
000539636200007
EID výsledku v databázi Scopus
2-s2.0-85078309242