Reproducing kernel for the exterior of an ellipsoid and its use for generating function bases in gravity field studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F12%3A%230001836" target="_blank" >RIV/00025615:_____/12:#0001836 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reproducing kernel for the exterior of an ellipsoid and its use for generating function bases in gravity field studies
Popis výsledku v původním jazyce
In gravity field studies linear combinations of basis functions are often used to approximate the gravitational potential of the Earth or its disturbing part. The problem is interpreted for the exterior of a sphere or an oblate ellipsoid of revolution. As a rule, spherical or ellipsoidal harmonics are used as basis functions within this concept. The second case is less frequent, but is stimulated by a number of driving impulses. In general its investigation and possibilities for routine implementation are given a considerable attention. As known basis functions like spherical or ellipsoidal harmonics are frequency localized. Alternatively, our aim is to study the use of space localize basis functions. We focus on basis functions generated by means of the reproducing kernel in the respective Hilbert space. The use of the reproducing kernel offers a straightforward way leading to entries in Galekin?s matrix of the linear system for unknown scalar coefficients. In spherical case the probl
Název v anglickém jazyce
Reproducing kernel for the exterior of an ellipsoid and its use for generating function bases in gravity field studies
Popis výsledku anglicky
In gravity field studies linear combinations of basis functions are often used to approximate the gravitational potential of the Earth or its disturbing part. The problem is interpreted for the exterior of a sphere or an oblate ellipsoid of revolution. As a rule, spherical or ellipsoidal harmonics are used as basis functions within this concept. The second case is less frequent, but is stimulated by a number of driving impulses. In general its investigation and possibilities for routine implementation are given a considerable attention. As known basis functions like spherical or ellipsoidal harmonics are frequency localized. Alternatively, our aim is to study the use of space localize basis functions. We focus on basis functions generated by means of the reproducing kernel in the respective Hilbert space. The use of the reproducing kernel offers a straightforward way leading to entries in Galekin?s matrix of the linear system for unknown scalar coefficients. In spherical case the probl
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Vienna
Název nakladatele resp. objednatele
European Geoscience Union
Verze
—
Identifikační číslo nosiče
—