Quasigeoid and the relation of ETRS to the Bpv system in the Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001900" target="_blank" >RIV/00025615:_____/13:#0001900 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasigeoid and the relation of ETRS to the Bpv system in the Czech Republic
Popis výsledku v původním jazyce
The paper deals with the development of a novel Czech quasigeoid model and the respective transformation between ETRS and the Czech vertical reference system Bpv (Baltic after adjustment) based on Molodensky's normal heights. The theoretical and numerical approach to quasigeoid modelling have been reconsidered. The determination of the disturbing potential T on the Earth?s surface is treated as the solution of the so-called gravimetric boundary value problem and thus rests on the gravity disturbances used in quality of input data. The representation formula for T has been derived by means of the Green function method interpreted for the exterior of an oblate spheroid. This leads to an integral kernel (an analogue to the so-called Hotine function) better adapted to the geometry of the real boundary. Terrain and oblique derivative effects in the boundary condition are taken into account through successive approximations and a method based on the analytical continuation. The approach enab
Název v anglickém jazyce
Quasigeoid and the relation of ETRS to the Bpv system in the Czech Republic
Popis výsledku anglicky
The paper deals with the development of a novel Czech quasigeoid model and the respective transformation between ETRS and the Czech vertical reference system Bpv (Baltic after adjustment) based on Molodensky's normal heights. The theoretical and numerical approach to quasigeoid modelling have been reconsidered. The determination of the disturbing potential T on the Earth?s surface is treated as the solution of the so-called gravimetric boundary value problem and thus rests on the gravity disturbances used in quality of input data. The representation formula for T has been derived by means of the Green function method interpreted for the exterior of an oblate spheroid. This leads to an integral kernel (an analogue to the so-called Hotine function) better adapted to the geometry of the real boundary. Terrain and oblique derivative effects in the boundary condition are taken into account through successive approximations and a method based on the analytical continuation. The approach enab
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Potsdam
Název nakladatele resp. objednatele
International Association of Geodesy
Verze
—
Identifikační číslo nosiče
—