Application of feature selection for predicting leaf chlorophyll content in oats (Avena sativa l.) from hyperspectral imagery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027006%3A_____%2F20%3A10149389" target="_blank" >RIV/00027006:_____/20:10149389 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41310/20:85216
Výsledek na webu
<a href="https://agronomy.emu.ee/wp-content/uploads/2020/07/AR2020_Vol18No4_Zelazny.pdf" target="_blank" >https://agronomy.emu.ee/wp-content/uploads/2020/07/AR2020_Vol18No4_Zelazny.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15159/AR.20.174" target="_blank" >10.15159/AR.20.174</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of feature selection for predicting leaf chlorophyll content in oats (Avena sativa l.) from hyperspectral imagery
Popis výsledku v původním jazyce
Feature selection can improve predictions generated by partial least squares models. In the context of hyperspectral imaging, it can also enable the development of affordable devices with specialized applications. The feasibility of feature selection for oat leaf chlorophyll estimation from hyperspectral imagery was assessed using a public domain dataset. A wrapper approach resulted in a simplistic model with poor predictive performance. The number of model inputs decreased from 94 to 3 bands when a filter approach based on the minimum redundancy, maximum relevance criterion was attempted. The filtering led to improved prediction quality, with the root mean square error decreasing from 0.17 to 0.16 g m-2 and R2 increasing from 0.57 to 0.62. Accurate predictions were obtained especially for low chlorophyll levels. The obtained model estimated leaf chlorophyll concentration from near infra-red reflectance, canopy darkness, and its blueness. The prediction robustness needs to be investigated, which can be done by employing an ensemble methodology and testing the model on a new dataset with improved ground-truth measurements and additional crop species.
Název v anglickém jazyce
Application of feature selection for predicting leaf chlorophyll content in oats (Avena sativa l.) from hyperspectral imagery
Popis výsledku anglicky
Feature selection can improve predictions generated by partial least squares models. In the context of hyperspectral imaging, it can also enable the development of affordable devices with specialized applications. The feasibility of feature selection for oat leaf chlorophyll estimation from hyperspectral imagery was assessed using a public domain dataset. A wrapper approach resulted in a simplistic model with poor predictive performance. The number of model inputs decreased from 94 to 3 bands when a filter approach based on the minimum redundancy, maximum relevance criterion was attempted. The filtering led to improved prediction quality, with the root mean square error decreasing from 0.17 to 0.16 g m-2 and R2 increasing from 0.57 to 0.62. Accurate predictions were obtained especially for low chlorophyll levels. The obtained model estimated leaf chlorophyll concentration from near infra-red reflectance, canopy darkness, and its blueness. The prediction robustness needs to be investigated, which can be done by employing an ensemble methodology and testing the model on a new dataset with improved ground-truth measurements and additional crop species.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agronomy Research
ISSN
1406-894X
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
EE - Estonská republika
Počet stran výsledku
12
Strana od-do
2665-2676
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85097302881