Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F23%3AN0000004" target="_blank" >RIV/00027073:_____/23:N0000004 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s40808-022-01493-5" target="_blank" >https://link.springer.com/article/10.1007/s40808-022-01493-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40808-022-01493-5" target="_blank" >10.1007/s40808-022-01493-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model

  • Popis výsledku v původním jazyce

    Although valuable for discovering geographical relationships and spatial statistics, bivariate maps or colour schemes are rarely employed in soil-related studies. For high-resolution mapping of the spatial relationships and patterns between the carbon-to-nitrogen (CN) ratio and its uncertainty throughout the Czech Republic, we assessed the application of a bivariate colour scheme. A random forest (RF) model was used to forecast CN ratio levels derived from the LUCAS topsoil dataset (n = 440 topsoil samples) using a stack of 22 environmental covariates. Of these covariates, Landsat 8 predictors (i.e. b6—SWIR 1 and b2—BLUE) had the highest relative value in the RF model. Additionally, partial dependence plots (PDPs) revealed that the aforementioned predictors had a comparable marginal impact on the CN model prediction. The 30 m × 30 m pixels CN ratio and uncertainty maps (at 0–20 cm) were able to distinguish the level contents evenly across the entire country while displaying distinct spatial features for each map. The uncertainty map and CN ratio prediction were both utilized to logically construct a bivariate colour scheme at 60 m × 60 m pixels, which enabled a once-off visualization of the two maps. The approach was deemed promising and proved generalizable for large-scale geographical evaluations in the focus area. Based on the output of the bivariate map visual, the spatial relationships and patterns between the CN ratio prediction and its uncertainty could be studied.

  • Název v anglickém jazyce

    Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model

  • Popis výsledku anglicky

    Although valuable for discovering geographical relationships and spatial statistics, bivariate maps or colour schemes are rarely employed in soil-related studies. For high-resolution mapping of the spatial relationships and patterns between the carbon-to-nitrogen (CN) ratio and its uncertainty throughout the Czech Republic, we assessed the application of a bivariate colour scheme. A random forest (RF) model was used to forecast CN ratio levels derived from the LUCAS topsoil dataset (n = 440 topsoil samples) using a stack of 22 environmental covariates. Of these covariates, Landsat 8 predictors (i.e. b6—SWIR 1 and b2—BLUE) had the highest relative value in the RF model. Additionally, partial dependence plots (PDPs) revealed that the aforementioned predictors had a comparable marginal impact on the CN model prediction. The 30 m × 30 m pixels CN ratio and uncertainty maps (at 0–20 cm) were able to distinguish the level contents evenly across the entire country while displaying distinct spatial features for each map. The uncertainty map and CN ratio prediction were both utilized to logically construct a bivariate colour scheme at 60 m × 60 m pixels, which enabled a once-off visualization of the two maps. The approach was deemed promising and proved generalizable for large-scale geographical evaluations in the focus area. Based on the output of the bivariate map visual, the spatial relationships and patterns between the CN ratio prediction and its uncertainty could be studied.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Modeling Earth Systems and Environment

  • ISSN

    2363-6203

  • e-ISSN

    2363-6211

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

    1417-1424

  • Kód UT WoS článku

    000843260600001

  • EID výsledku v databázi Scopus

    2-s2.0-85136542008