Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F23%3AN0000004" target="_blank" >RIV/00027073:_____/23:N0000004 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s40808-022-01493-5" target="_blank" >https://link.springer.com/article/10.1007/s40808-022-01493-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40808-022-01493-5" target="_blank" >10.1007/s40808-022-01493-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model
Popis výsledku v původním jazyce
Although valuable for discovering geographical relationships and spatial statistics, bivariate maps or colour schemes are rarely employed in soil-related studies. For high-resolution mapping of the spatial relationships and patterns between the carbon-to-nitrogen (CN) ratio and its uncertainty throughout the Czech Republic, we assessed the application of a bivariate colour scheme. A random forest (RF) model was used to forecast CN ratio levels derived from the LUCAS topsoil dataset (n = 440 topsoil samples) using a stack of 22 environmental covariates. Of these covariates, Landsat 8 predictors (i.e. b6—SWIR 1 and b2—BLUE) had the highest relative value in the RF model. Additionally, partial dependence plots (PDPs) revealed that the aforementioned predictors had a comparable marginal impact on the CN model prediction. The 30 m × 30 m pixels CN ratio and uncertainty maps (at 0–20 cm) were able to distinguish the level contents evenly across the entire country while displaying distinct spatial features for each map. The uncertainty map and CN ratio prediction were both utilized to logically construct a bivariate colour scheme at 60 m × 60 m pixels, which enabled a once-off visualization of the two maps. The approach was deemed promising and proved generalizable for large-scale geographical evaluations in the focus area. Based on the output of the bivariate map visual, the spatial relationships and patterns between the CN ratio prediction and its uncertainty could be studied.
Název v anglickém jazyce
Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model
Popis výsledku anglicky
Although valuable for discovering geographical relationships and spatial statistics, bivariate maps or colour schemes are rarely employed in soil-related studies. For high-resolution mapping of the spatial relationships and patterns between the carbon-to-nitrogen (CN) ratio and its uncertainty throughout the Czech Republic, we assessed the application of a bivariate colour scheme. A random forest (RF) model was used to forecast CN ratio levels derived from the LUCAS topsoil dataset (n = 440 topsoil samples) using a stack of 22 environmental covariates. Of these covariates, Landsat 8 predictors (i.e. b6—SWIR 1 and b2—BLUE) had the highest relative value in the RF model. Additionally, partial dependence plots (PDPs) revealed that the aforementioned predictors had a comparable marginal impact on the CN model prediction. The 30 m × 30 m pixels CN ratio and uncertainty maps (at 0–20 cm) were able to distinguish the level contents evenly across the entire country while displaying distinct spatial features for each map. The uncertainty map and CN ratio prediction were both utilized to logically construct a bivariate colour scheme at 60 m × 60 m pixels, which enabled a once-off visualization of the two maps. The approach was deemed promising and proved generalizable for large-scale geographical evaluations in the focus area. Based on the output of the bivariate map visual, the spatial relationships and patterns between the CN ratio prediction and its uncertainty could be studied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modeling Earth Systems and Environment
ISSN
2363-6203
e-ISSN
2363-6211
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
1417-1424
Kód UT WoS článku
000843260600001
EID výsledku v databázi Scopus
2-s2.0-85136542008