Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic caries detection in bitewing radiographs-Part II: experimental comparison

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F24%3A10469921" target="_blank" >RIV/00064165:_____/24:10469921 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/24:00373356 RIV/00216208:11110/24:10469921

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bOrgQJEgP-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bOrgQJEgP-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00784-024-05528-2" target="_blank" >10.1007/s00784-024-05528-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic caries detection in bitewing radiographs-Part II: experimental comparison

  • Popis výsledku v původním jazyce

    Objective: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of reliable ground truth.Materials and Methods: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method. All annotators were compared in terms of the number of errors and intersection over union (IoU) using pairwise comparisons, with respect to the consensus standard, and with respect to the annotator of the training dataset of the automatic method.Results: The number of lesions marked by experts in 100 images varied between 241 and 425. Pair- wise comparisons showed that the automatic method outperformed all dentists except the original annotator in the mean number of errors, while being among the best in terms of IoU. With respect to a consensus standard, the performance of the automatic method was best in terms of the num- ber of errors and slightly below average in terms of IoU. Compared with the original annotator, the automatic method had the highest IoU and only one expert made fewer errors.Conclusions: Caries detection is challenging even for humans. The automatic method consistently outperformed less experienced dentists and performed as well as highly experienced dentists. Clinical Significance: The consensus in caries detection between experts is low. An automatic method can improve both the accuracy and repeatability of caries detection, providing a useful second opinion even for very experienced dentists.

  • Název v anglickém jazyce

    Automatic caries detection in bitewing radiographs-Part II: experimental comparison

  • Popis výsledku anglicky

    Objective: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of reliable ground truth.Materials and Methods: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method. All annotators were compared in terms of the number of errors and intersection over union (IoU) using pairwise comparisons, with respect to the consensus standard, and with respect to the annotator of the training dataset of the automatic method.Results: The number of lesions marked by experts in 100 images varied between 241 and 425. Pair- wise comparisons showed that the automatic method outperformed all dentists except the original annotator in the mean number of errors, while being among the best in terms of IoU. With respect to a consensus standard, the performance of the automatic method was best in terms of the num- ber of errors and slightly below average in terms of IoU. Compared with the original annotator, the automatic method had the highest IoU and only one expert made fewer errors.Conclusions: Caries detection is challenging even for humans. The automatic method consistently outperformed less experienced dentists and performed as well as highly experienced dentists. Clinical Significance: The consensus in caries detection between experts is low. An automatic method can improve both the accuracy and repeatability of caries detection, providing a useful second opinion even for very experienced dentists.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30208 - Dentistry, oral surgery and medicine

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Clinical Oral Investigations

  • ISSN

    1432-6981

  • e-ISSN

    1436-3771

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

    133

  • Kód UT WoS článku

    001156150200002

  • EID výsledku v databázi Scopus

    2-s2.0-85184407305