Automatic caries detection in bitewing radiographs-Part II: experimental comparison
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F24%3A10469921" target="_blank" >RIV/00064165:_____/24:10469921 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00373356 RIV/00216208:11110/24:10469921
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bOrgQJEgP-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bOrgQJEgP-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00784-024-05528-2" target="_blank" >10.1007/s00784-024-05528-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic caries detection in bitewing radiographs-Part II: experimental comparison
Popis výsledku v původním jazyce
Objective: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of reliable ground truth.Materials and Methods: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method. All annotators were compared in terms of the number of errors and intersection over union (IoU) using pairwise comparisons, with respect to the consensus standard, and with respect to the annotator of the training dataset of the automatic method.Results: The number of lesions marked by experts in 100 images varied between 241 and 425. Pair- wise comparisons showed that the automatic method outperformed all dentists except the original annotator in the mean number of errors, while being among the best in terms of IoU. With respect to a consensus standard, the performance of the automatic method was best in terms of the num- ber of errors and slightly below average in terms of IoU. Compared with the original annotator, the automatic method had the highest IoU and only one expert made fewer errors.Conclusions: Caries detection is challenging even for humans. The automatic method consistently outperformed less experienced dentists and performed as well as highly experienced dentists. Clinical Significance: The consensus in caries detection between experts is low. An automatic method can improve both the accuracy and repeatability of caries detection, providing a useful second opinion even for very experienced dentists.
Název v anglickém jazyce
Automatic caries detection in bitewing radiographs-Part II: experimental comparison
Popis výsledku anglicky
Objective: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of reliable ground truth.Materials and Methods: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method. All annotators were compared in terms of the number of errors and intersection over union (IoU) using pairwise comparisons, with respect to the consensus standard, and with respect to the annotator of the training dataset of the automatic method.Results: The number of lesions marked by experts in 100 images varied between 241 and 425. Pair- wise comparisons showed that the automatic method outperformed all dentists except the original annotator in the mean number of errors, while being among the best in terms of IoU. With respect to a consensus standard, the performance of the automatic method was best in terms of the num- ber of errors and slightly below average in terms of IoU. Compared with the original annotator, the automatic method had the highest IoU and only one expert made fewer errors.Conclusions: Caries detection is challenging even for humans. The automatic method consistently outperformed less experienced dentists and performed as well as highly experienced dentists. Clinical Significance: The consensus in caries detection between experts is low. An automatic method can improve both the accuracy and repeatability of caries detection, providing a useful second opinion even for very experienced dentists.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30208 - Dentistry, oral surgery and medicine
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Clinical Oral Investigations
ISSN
1432-6981
e-ISSN
1436-3771
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
133
Kód UT WoS článku
001156150200002
EID výsledku v databázi Scopus
2-s2.0-85184407305