Computational Analysis and Classification of Hernia Repairs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064190%3A_____%2F24%3A10001237" target="_blank" >RIV/00064190:_____/24:10001237 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00380699 RIV/00216208:11110/24:10479949 RIV/70883521:28140/24:63584698 RIV/60461373:22340/24:43930501 RIV/00064203:_____/24:10479949
Výsledek na webu
<a href="https://doi.org/10.3390/app14083236" target="_blank" >https://doi.org/10.3390/app14083236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app14083236" target="_blank" >10.3390/app14083236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Analysis and Classification of Hernia Repairs
Popis výsledku v původním jazyce
Problems related to ventral hernia repairs (VHR) are very common, and evaluating them using computational methods can assist in selecting the most appropriate treatment. This study is based upon data from 3339 patients from different European countries observed during the last 12 years (2012-2023), which were collected by specialists in hernia surgery. Most patients underwent standard surgical procedures, with a growing trend towards laparoscopic surgery. This paper focuses on statistically evaluating the treatment methods in relation to patient age, body mass index (BMI), and the type of repair. Appropriate mathematical methods are employed to extract and classify the selected features, with emphasis on computational and machine-learning techniques. The paper presents surgical hernia treatment statistics related to patient age, BMI, and repair methods. The main conclusions point to mean groin hernia repair (GHR) complications of 19% for patients in the database. The accuracy of separating GHR mesh surgery with and without postoperative complications reached 74.4% using a two-layer neural network classification. Robotic surgeries represent 22.9% of all the evaluated hernia repairs. The proposed methodology suggests both an interdisciplinary approach and the utilization of computational intelligence in hernia surgery, potentially applicable in a clinical setting.
Název v anglickém jazyce
Computational Analysis and Classification of Hernia Repairs
Popis výsledku anglicky
Problems related to ventral hernia repairs (VHR) are very common, and evaluating them using computational methods can assist in selecting the most appropriate treatment. This study is based upon data from 3339 patients from different European countries observed during the last 12 years (2012-2023), which were collected by specialists in hernia surgery. Most patients underwent standard surgical procedures, with a growing trend towards laparoscopic surgery. This paper focuses on statistically evaluating the treatment methods in relation to patient age, body mass index (BMI), and the type of repair. Appropriate mathematical methods are employed to extract and classify the selected features, with emphasis on computational and machine-learning techniques. The paper presents surgical hernia treatment statistics related to patient age, BMI, and repair methods. The main conclusions point to mean groin hernia repair (GHR) complications of 19% for patients in the database. The accuracy of separating GHR mesh surgery with and without postoperative complications reached 74.4% using a two-layer neural network classification. Robotic surgeries represent 22.9% of all the evaluated hernia repairs. The proposed methodology suggests both an interdisciplinary approach and the utilization of computational intelligence in hernia surgery, potentially applicable in a clinical setting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30230 - Other clinical medicine subjects
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001210081400001
EID výsledku v databázi Scopus
2-s2.0-85192575393