PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F14%3A00061012" target="_blank" >RIV/00159816:_____/14:00061012 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pcbi.1003440" target="_blank" >http://dx.doi.org/10.1371/journal.pcbi.1003440</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pcbi.1003440" target="_blank" >10.1371/journal.pcbi.1003440</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Popis výsledku v původním jazyce
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations onprotein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and furtherimprovement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, P
Název v anglickém jazyce
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Popis výsledku anglicky
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations onprotein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and furtherimprovement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, P
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EB - Genetika a molekulární biologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.100%2F02%2F0123" target="_blank" >ED1.100/02/0123: Fakultní nemocnice u sv. Anny v Brně - Mezinárodní centrum klinického výzkumu (FNUSA - ICRC)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS Computational Biology
ISSN
1553-7358
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"e1003440"
Kód UT WoS článku
000337948500040
EID výsledku v databázi Scopus
—