Computational Design of Stable and Soluble Biocatalysts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00071086" target="_blank" >RIV/00159816:_____/19:00071086 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/18:PU130812 RIV/00216224:14310/19:00113346
Výsledek na webu
<a href="https://pubs.acs.org/doi/abs/10.1021/acscatal.8b03613" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acscatal.8b03613</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.8b03613" target="_blank" >10.1021/acscatal.8b03613</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Design of Stable and Soluble Biocatalysts
Popis výsledku v původním jazyce
Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values in buffers of different composition and in the presence of organic cosolvents. This has created great interest in using computational methods to enhance biocatalysts' robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses, and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.
Název v anglickém jazyce
Computational Design of Stable and Soluble Biocatalysts
Popis výsledku anglicky
Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values in buffers of different composition and in the presence of organic cosolvents. This has created great interest in using computational methods to enhance biocatalysts' robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses, and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1033-1054
Kód UT WoS článku
000458707000028
EID výsledku v databázi Scopus
—