Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational Design of Stable and Soluble Biocatalysts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130812" target="_blank" >RIV/00216305:26230/18:PU130812 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00159816:_____/19:00071086 RIV/00216224:14310/19:00113346

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acscatal.8b03613" target="_blank" >https://pubs.acs.org/doi/10.1021/acscatal.8b03613</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.8b03613" target="_blank" >10.1021/acscatal.8b03613</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational Design of Stable and Soluble Biocatalysts

  • Popis výsledku v původním jazyce

    Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values, in buffers of different composition, and in the presence of organic co-solvents. This has created great interest in using computational methods to enhance biocatalysts robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, the number of sequences available for phylogenetic analyses is growing, and complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.

  • Název v anglickém jazyce

    Computational Design of Stable and Soluble Biocatalysts

  • Popis výsledku anglicky

    Natural enzymes are delicate biomolecules possessing only marginal thermodynamic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need to design optimized protein sequences that maximize stability, solubility, and activity over a wide range of temperatures and pH values, in buffers of different composition, and in the presence of organic co-solvents. This has created great interest in using computational methods to enhance biocatalysts robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately using available force fields, the number of sequences available for phylogenetic analyses is growing, and complex computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions. Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the computational design of stable and soluble biocatalysts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Svazek periodika

    2019

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    1033-1054

  • Kód UT WoS článku

    000458707000028

  • EID výsledku v databázi Scopus

    2-s2.0-85059802317