EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F20%3A00073000" target="_blank" >RIV/00159816:_____/20:00073000 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00117412 RIV/00216305:26230/20:PU138647
Výsledek na webu
<a href="https://academic.oup.com/nar/article/48/W1/W104/5835821" target="_blank" >https://academic.oup.com/nar/article/48/W1/W104/5835821</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nar/gkaa372" target="_blank" >10.1093/nar/gkaa372</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities
Popis výsledku v původním jazyce
Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner-a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page.
Název v anglickém jazyce
EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities
Popis výsledku anglicky
Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner-a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nucleic Acids Research
ISSN
0305-1048
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
W1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
"W104"-"W109"
Kód UT WoS článku
000562474100017
EID výsledku v databázi Scopus
—