Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081401" target="_blank" >RIV/00159816:_____/24:00081401 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26220/24:PU156035

  • Výsledek na webu

    <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11045138/" target="_blank" >https://pmc.ncbi.nlm.nih.gov/articles/PMC11045138/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pcbi.1011152" target="_blank" >10.1371/journal.pcbi.1011152</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity

  • Popis výsledku v původním jazyce

    Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals.Trial Registration: NCT03946618. Circadian and multiday cycles are an important part of many long-term neuro-behavioral phenomena such as pathological inter-ictal epileptiform discharges (IEDs) and seizures in epilepsy. Long-term, ambulatory, neuro-behavioral monitoring in human patients involves complex recording systems that can be subject to intermittent, irregular data loss and storage limitations, resulting in sparse, irregularly sampled data. Cycle identification in sparse data or irregular data using traditional frequency decomposition techniques typically requires interpolation to create a regular timeseries. Using unique, long-term recordings of pathological brain activity in people with epilepsy implanted with an investigational device, we developed a method to identify cycles in sparse, irregular neuro-behavioral data without interpolation. We anticipate this approach will enable retrospective cycle identification in sparse neuro-behavioral timeseries and support prospective sparse sampling in monitoring systems to enable long-term monitoring of patients and to extend storage capacity in a variety of ambulatory monitoring applications.

  • Název v anglickém jazyce

    Method for cycle detection in sparse, irregularly sampled, long-term neuro-behavioral timeseries: Basis pursuit denoising with polynomial detrending of long-term, inter-ictal epileptiform activity

  • Popis výsledku anglicky

    Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals.Trial Registration: NCT03946618. Circadian and multiday cycles are an important part of many long-term neuro-behavioral phenomena such as pathological inter-ictal epileptiform discharges (IEDs) and seizures in epilepsy. Long-term, ambulatory, neuro-behavioral monitoring in human patients involves complex recording systems that can be subject to intermittent, irregular data loss and storage limitations, resulting in sparse, irregularly sampled data. Cycle identification in sparse data or irregular data using traditional frequency decomposition techniques typically requires interpolation to create a regular timeseries. Using unique, long-term recordings of pathological brain activity in people with epilepsy implanted with an investigational device, we developed a method to identify cycles in sparse, irregular neuro-behavioral data without interpolation. We anticipate this approach will enable retrospective cycle identification in sparse neuro-behavioral timeseries and support prospective sparse sampling in monitoring systems to enable long-term monitoring of patients and to extend storage capacity in a variety of ambulatory monitoring applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10608 - Biochemistry and molecular biology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS Computational Biology

  • ISSN

    1553-734X

  • e-ISSN

    1553-7358

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    001209049100003

  • EID výsledku v databázi Scopus