Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F24%3A00079388" target="_blank" >RIV/00209805:_____/24:00079388 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/24:00135372
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417423016299" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423016299</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2023.121127" target="_blank" >10.1016/j.eswa.2023.121127</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
Popis výsledku v původním jazyce
Motivation: Low-stage lung cancer is known to recur unpredictably, and patients receiving various treatment methods like radiation, chemotherapy, and immunotherapies have been seen to respond very differently. Identifying a priori if a patient is going to relapse or not could make a difference in terms of saving lives and personalized care offered. In this work, we provide an answer to the following research question: Is it possible to enhance the machine learning (ML) of the estimated probability of relapse in early-stage non-small-cell lung cancer (NSCLC) patients with aneuploidy imputation scores? Results: To predict recurrence in 1,348 early-stage (I-II) NSCLC patients, we train graph ML models utilizing the Spanish pulmonary cancer group knowledge graph enriched with triples from pathway imputation. ML models trained on Knowledge graph data enriched with triples from pathway score imputation present an 82% Precision and 91% Specificity in predicting relapse over 200 patients from a held-out test set. ML models trained using graphs data could prove useful supplemental tool in the TNM classification systems and improve a lung cancer patient's prognosis. (C) 2023 The Author(s)
Název v anglickém jazyce
Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
Popis výsledku anglicky
Motivation: Low-stage lung cancer is known to recur unpredictably, and patients receiving various treatment methods like radiation, chemotherapy, and immunotherapies have been seen to respond very differently. Identifying a priori if a patient is going to relapse or not could make a difference in terms of saving lives and personalized care offered. In this work, we provide an answer to the following research question: Is it possible to enhance the machine learning (ML) of the estimated probability of relapse in early-stage non-small-cell lung cancer (NSCLC) patients with aneuploidy imputation scores? Results: To predict recurrence in 1,348 early-stage (I-II) NSCLC patients, we train graph ML models utilizing the Spanish pulmonary cancer group knowledge graph enriched with triples from pathway imputation. ML models trained on Knowledge graph data enriched with triples from pathway score imputation present an 82% Precision and 91% Specificity in predicting relapse over 200 patients from a held-out test set. ML models trained using graphs data could prove useful supplemental tool in the TNM classification systems and improve a lung cancer patient's prognosis. (C) 2023 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
235
Číslo periodika v rámci svazku
January 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
121127
Kód UT WoS článku
001063276900001
EID výsledku v databázi Scopus
2-s2.0-85168419455