Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F15%3A10314370" target="_blank" >RIV/00216208:11110/15:10314370 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15110/15:33154942
Výsledek na webu
<a href="http://dx.doi.org/10.1093/carcin/bgv128" target="_blank" >http://dx.doi.org/10.1093/carcin/bgv128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/carcin/bgv128" target="_blank" >10.1093/carcin/bgv128</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia
Popis výsledku v původním jazyce
Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5 x 10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33 456 controls and 6756 adenocarcinoma(AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a to
Název v anglickém jazyce
Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia
Popis výsledku anglicky
Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5 x 10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33 456 controls and 6756 adenocarcinoma(AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a to
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FN - Epidemiologie, infekční nemoci a klinická imunologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Carcinogenesis
ISSN
0143-3334
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1314-1326
Kód UT WoS článku
000366386800008
EID výsledku v databázi Scopus
2-s2.0-84949569031