Diffuse reflectance spectroscopy in dental caries detection and classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10411843" target="_blank" >RIV/00216208:11110/20:10411843 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00347294 RIV/00179906:_____/20:10411843 RIV/00216208:11150/20:10411843 RIV/60461373:22340/20:43920945
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MxP6h0glZQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MxP6h0glZQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-020-01640-4" target="_blank" >10.1007/s11760-020-01640-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diffuse reflectance spectroscopy in dental caries detection and classification
Popis výsledku v původním jazyce
Machine learning and augmented reality form very important computational tools in biomedicine, neurology and stomatology as well. The present paper is devoted to a novel method of spectroscopic detection of caries lesions that changes the optical properties of the affected tissue. This method of the diffuse reflectance spectroscopy is used in many biomedical areas even though the analysis of associated data suffers from a large variance of acquired signals' shape and their properties. The proposed methodology of measured spectra analysis is based upon general methods of signal feature evaluation and the use of computational intelligence for their classification. The paper compares properties of dental feature clusters for the set of 578 tissues with different levels of their changes. Classification results of selected features by the support vector machine, Bayesian method, k-nearest neighbour method and neural network enable to distinguish the healthy tissue and caries lesions with the accuracy from 94.1 to 98.4% and the cross-validation error lower than 8.3%. These results suggest how the augmented reality and general mathematical signal processing methods can be beneficial for diagnostic purposes in dental research and possibly in the clinical practice as well.
Název v anglickém jazyce
Diffuse reflectance spectroscopy in dental caries detection and classification
Popis výsledku anglicky
Machine learning and augmented reality form very important computational tools in biomedicine, neurology and stomatology as well. The present paper is devoted to a novel method of spectroscopic detection of caries lesions that changes the optical properties of the affected tissue. This method of the diffuse reflectance spectroscopy is used in many biomedical areas even though the analysis of associated data suffers from a large variance of acquired signals' shape and their properties. The proposed methodology of measured spectra analysis is based upon general methods of signal feature evaluation and the use of computational intelligence for their classification. The paper compares properties of dental feature clusters for the set of 578 tissues with different levels of their changes. Classification results of selected features by the support vector machine, Bayesian method, k-nearest neighbour method and neural network enable to distinguish the healthy tissue and caries lesions with the accuracy from 94.1 to 98.4% and the cross-validation error lower than 8.3%. These results suggest how the augmented reality and general mathematical signal processing methods can be beneficial for diagnostic purposes in dental research and possibly in the clinical practice as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30208 - Dentistry, oral surgery and medicine
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Centrum rozvoje personalizované medicíny u věkem podmíněných onemocnění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1063-1070
Kód UT WoS článku
000510294800001
EID výsledku v databázi Scopus
2-s2.0-85078830904