Incremental deep learning for reflectivity data recognition in stomatology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924512" target="_blank" >RIV/60461373:22340/22:43924512 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/22:10438736 RIV/00216208:11150/22:10438736 RIV/68407700:21730/22:00363950
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-021-06842-6" target="_blank" >https://link.springer.com/article/10.1007/s00521-021-06842-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-021-06842-6" target="_blank" >10.1007/s00521-021-06842-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incremental deep learning for reflectivity data recognition in stomatology
Popis výsledku v původním jazyce
The recognition of stomatological disorders and the classification of dental caries are important areas of biomedicine that can hugely benefit from machine learning tools for the construction of relevant mathematical models. This paper explores the possibility of using reflectivity data to distinguish between healthy tissues and caries by deep learning and multilayer convolutional neural networks. The experimental data set includes more than 700 observations recorded in the stomatology laboratory. For rigor, the results obtained from the deep learning systems are compared with those evaluated for selected sets of features estimated for each observation and classified by a decision tree, support vector machine (SVM), k-nearest neighbor, Bayesian methods, and two-layer neural networks. The classification accuracy obtained for the deep learning systems was 98.1% and 94.4% for data in the signal and spectral domains, respectively, in comparison with an accuracy of 97.2% and 87.2% evaluated by the SVM method. The proposed method conclusively demonstrates how the artificial intelligence and deep learning methodology can contribute to improved diagnosis of dental problem in stomatology. © 2021, The Author(s).
Název v anglickém jazyce
Incremental deep learning for reflectivity data recognition in stomatology
Popis výsledku anglicky
The recognition of stomatological disorders and the classification of dental caries are important areas of biomedicine that can hugely benefit from machine learning tools for the construction of relevant mathematical models. This paper explores the possibility of using reflectivity data to distinguish between healthy tissues and caries by deep learning and multilayer convolutional neural networks. The experimental data set includes more than 700 observations recorded in the stomatology laboratory. For rigor, the results obtained from the deep learning systems are compared with those evaluated for selected sets of features estimated for each observation and classified by a decision tree, support vector machine (SVM), k-nearest neighbor, Bayesian methods, and two-layer neural networks. The classification accuracy obtained for the deep learning systems was 98.1% and 94.4% for data in the signal and spectral domains, respectively, in comparison with an accuracy of 97.2% and 87.2% evaluated by the SVM method. The proposed method conclusively demonstrates how the artificial intelligence and deep learning methodology can contribute to improved diagnosis of dental problem in stomatology. © 2021, The Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
34
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
7081-7089
Kód UT WoS článku
000746795000001
EID výsledku v databázi Scopus
2-s2.0-85123493281