Absorption Spectroscopy in Dental Tissue Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F23%3A10464421" target="_blank" >RIV/00216208:11110/23:10464421 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00371373 RIV/60461373:22340/23:43927698
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hU8X9x34xk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hU8X9x34xk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3246299" target="_blank" >10.1109/ACCESS.2023.3246299</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Absorption Spectroscopy in Dental Tissue Analysis
Popis výsledku v původním jazyce
Oral health problems are closely associated with the analysis of dental tissue changes and the stomatologic treatment that follows. This paper explores the use of diffuse reflectance spectroscopy in the detection of dental tissue disorders. The data set includes 343 measurements of teeth spectra in the wavelength range from 400 to 1700 nm. The proposed methodology focuses on computational and statistical methods and the use of these methods for the classification of dental tissue into two classes (healthy and unhealthy) by estimating the probability of class membership. Signal processing is based on the difference between the healthy and unhealthy teeth reflectance spectra in the infrared and visible ranges. Selected features associated with observed spectra are then used for machine learning classification based on the experience of an expert in stomatology during the learning stage. The proposed modification of the weighted k-nearest neighbour method provides class boundaries and the probability of class membership during the verification stage. The accuracy of the classification process reached 95.4%. The proposed methodology and graphical user interface point to the possibility of using absorption spectroscopy in the evaluation of tissue quality changes and its possible implementation in the clinical environment.
Název v anglickém jazyce
Absorption Spectroscopy in Dental Tissue Analysis
Popis výsledku anglicky
Oral health problems are closely associated with the analysis of dental tissue changes and the stomatologic treatment that follows. This paper explores the use of diffuse reflectance spectroscopy in the detection of dental tissue disorders. The data set includes 343 measurements of teeth spectra in the wavelength range from 400 to 1700 nm. The proposed methodology focuses on computational and statistical methods and the use of these methods for the classification of dental tissue into two classes (healthy and unhealthy) by estimating the probability of class membership. Signal processing is based on the difference between the healthy and unhealthy teeth reflectance spectra in the infrared and visible ranges. Selected features associated with observed spectra are then used for machine learning classification based on the experience of an expert in stomatology during the learning stage. The proposed modification of the weighted k-nearest neighbour method provides class boundaries and the probability of class membership during the verification stage. The accuracy of the classification process reached 95.4%. The proposed methodology and graphical user interface point to the possibility of using absorption spectroscopy in the evaluation of tissue quality changes and its possible implementation in the clinical environment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30208 - Dentistry, oral surgery and medicine
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
17569-17575
Kód UT WoS článku
000945189400001
EID výsledku v databázi Scopus
2-s2.0-85149176065