Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Strong energy component is more important than spectral selectivity in modeling responses of midbrain auditory neurons to wide-band environmental sounds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F22%3A10450831" target="_blank" >RIV/00216208:11110/22:10450831 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8qIeMGj0Ll" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8qIeMGj0Ll</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.biosystems.2022.104752" target="_blank" >10.1016/j.biosystems.2022.104752</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Strong energy component is more important than spectral selectivity in modeling responses of midbrain auditory neurons to wide-band environmental sounds

  • Popis výsledku v původním jazyce

    Modeling central auditory neurons in response to complex sounds not only helps understanding neural pro-cessing of speech signals but can also provide insights for biomimetics in neuro-engineering. While modeling responses of midbrain auditory neurons to synthetic tones is rather good, modeling those to environmental sounds is less satisfactory. Environmental sounds typically contain a wide range of frequency components, often with strong and transient energy. These stimulus features have not been examined in the conventional approach of auditory modeling centered on spectral selectivity. To this end, we firstly compared responses to an envi-ronmental sound of auditory midbrain neurons across 3 subpopulations of neurons with frequency selectivity in the low, middle and high ranges; secondly, we manipulated the sound energy, both in power and in spectrum, and compared across these subpopulations how their modeled responses were affected. The environmental sound was recorded when a rat was drinking from a feeding bottle (called the &apos;drinking sound&apos;). The sound spectrum was divided into 20 non-overlapping frequency bands (from 0 to 20 kHz, at 1 kHz width) and presented to an artificial neural model built on a committee machine with parallel spectral inputs to simulate the known tonotopic organization of the auditory system. The model was trained to predict empirical response probability profiles of neurons to the repeated sounds. Results showed that model performance depended more on the strong energy components than on the spectral selectivity. Findings were interpreted to reflect general sensitivity to rapidly changing sound intensities at the auditory midbrain and in the cortex.

  • Název v anglickém jazyce

    Strong energy component is more important than spectral selectivity in modeling responses of midbrain auditory neurons to wide-band environmental sounds

  • Popis výsledku anglicky

    Modeling central auditory neurons in response to complex sounds not only helps understanding neural pro-cessing of speech signals but can also provide insights for biomimetics in neuro-engineering. While modeling responses of midbrain auditory neurons to synthetic tones is rather good, modeling those to environmental sounds is less satisfactory. Environmental sounds typically contain a wide range of frequency components, often with strong and transient energy. These stimulus features have not been examined in the conventional approach of auditory modeling centered on spectral selectivity. To this end, we firstly compared responses to an envi-ronmental sound of auditory midbrain neurons across 3 subpopulations of neurons with frequency selectivity in the low, middle and high ranges; secondly, we manipulated the sound energy, both in power and in spectrum, and compared across these subpopulations how their modeled responses were affected. The environmental sound was recorded when a rat was drinking from a feeding bottle (called the &apos;drinking sound&apos;). The sound spectrum was divided into 20 non-overlapping frequency bands (from 0 to 20 kHz, at 1 kHz width) and presented to an artificial neural model built on a committee machine with parallel spectral inputs to simulate the known tonotopic organization of the auditory system. The model was trained to predict empirical response probability profiles of neurons to the repeated sounds. Results showed that model performance depended more on the strong energy components than on the spectral selectivity. Findings were interpreted to reflect general sensitivity to rapidly changing sound intensities at the auditory midbrain and in the cortex.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bio Systems

  • ISSN

    0303-2647

  • e-ISSN

    1872-8324

  • Svazek periodika

    221

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    IE - Irsko

  • Počet stran výsledku

    9

  • Strana od-do

    104752

  • Kód UT WoS článku

    000883256400003

  • EID výsledku v databázi Scopus

    2-s2.0-85137293145