Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Responses of midbrain auditory neurons to two different environmental sounds-A new approach on cross-sound modeling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F20%3A00539954" target="_blank" >RIV/68378041:_____/20:00539954 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/20:00332494

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0303264719300851?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0303264719300851?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.biosystems.2019.104021" target="_blank" >10.1016/j.biosystems.2019.104021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Responses of midbrain auditory neurons to two different environmental sounds-A new approach on cross-sound modeling

  • Popis výsledku v původním jazyce

    When modeling auditory responses to environmental sounds, results are satisfactory if both training and testing are restricted to datasets of one type of sound. To predict cross-sound responses (i.e., to predict the response to one type of sound e.g., rat Eating sound, after training with another type of sound e.g., rat Drinking sound), performance is typically poor. Here we implemented a novel approach to improve such cross-sound modeling (single unit datasets were collected at the auditory midbrain of anesthetized rats). The method had two key features: (a) population responses (e.g., average of 32 units) instead of responses of individual units were analyzed, and (b) the long sound segment was first divided into short segments (single sound-bouts), their similarity was then computed over a new metric involving the response (called Stimulus Response Model map or SRM map), and finally similar sound-bouts (regardless of sound type) and their associated responses (peristimulus time histograms, PSTHs) were modelled. Specifically, a committee machine model (artificial neural networks with 20 stratified spectral inputs) was trained with datasets from one sound type before predicting PSTH responses to another sound type. Model performance was markedly improved up to 92%. Results also suggested the involvement of different neural mechanisms in generating the early and late responses to amplitude transients in the broad-band environmental sounds. We concluded that it is possible to perform rather satisfactory cross-sound modeling on datasets grouped together based on their similarities in terms of the new metric of SRM map.

  • Název v anglickém jazyce

    Responses of midbrain auditory neurons to two different environmental sounds-A new approach on cross-sound modeling

  • Popis výsledku anglicky

    When modeling auditory responses to environmental sounds, results are satisfactory if both training and testing are restricted to datasets of one type of sound. To predict cross-sound responses (i.e., to predict the response to one type of sound e.g., rat Eating sound, after training with another type of sound e.g., rat Drinking sound), performance is typically poor. Here we implemented a novel approach to improve such cross-sound modeling (single unit datasets were collected at the auditory midbrain of anesthetized rats). The method had two key features: (a) population responses (e.g., average of 32 units) instead of responses of individual units were analyzed, and (b) the long sound segment was first divided into short segments (single sound-bouts), their similarity was then computed over a new metric involving the response (called Stimulus Response Model map or SRM map), and finally similar sound-bouts (regardless of sound type) and their associated responses (peristimulus time histograms, PSTHs) were modelled. Specifically, a committee machine model (artificial neural networks with 20 stratified spectral inputs) was trained with datasets from one sound type before predicting PSTH responses to another sound type. Model performance was markedly improved up to 92%. Results also suggested the involvement of different neural mechanisms in generating the early and late responses to amplitude transients in the broad-band environmental sounds. We concluded that it is possible to perform rather satisfactory cross-sound modeling on datasets grouped together based on their similarities in terms of the new metric of SRM map.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biosystems

  • ISSN

    0303-2647

  • e-ISSN

  • Svazek periodika

    187

  • Číslo periodika v rámci svazku

    jan.

  • Stát vydavatele periodika

    IE - Irsko

  • Počet stran výsledku

    8

  • Strana od-do

    104021

  • Kód UT WoS článku

    000508746500007

  • EID výsledku v databázi Scopus

    2-s2.0-85073003734