Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Novel approach to computerized breath detection in lung function diagnostics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F18%3A10381328" target="_blank" >RIV/00216208:11130/18:10381328 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/18:10381328 RIV/00064203:_____/18:10381328

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compbiomed.2018.07.017" target="_blank" >https://doi.org/10.1016/j.compbiomed.2018.07.017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2018.07.017" target="_blank" >10.1016/j.compbiomed.2018.07.017</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Novel approach to computerized breath detection in lung function diagnostics

  • Popis výsledku v původním jazyce

    Background: Breath detection, i.e. its precise delineation in time is a crucial step in lung function data analysis as obtaining any clinically relevant index is based on the proper localization of breath ends. Current threshold or smoothing algorithms suffer from severe inaccuracy in cases of suboptimal data quality. Especially in infants, the precise analysis is of utmost importance. The key objective of our work is to design an algorithm for accurate breath detection in severely distorted data. Methods: Flow and gas concentration data from multiple breath washout test were the input information. Based on universal physiological characteristics of the respiratory tract we designed an algorithm for breath detection. Its accuracy was tested on severely distorted data from 19 patients with different types of breathing disorders. Its performance was compared to the performance of currently used algorithms and to the breath counts estimated by human experts. Results: The novel algorithm outperformed the threshold algorithms with respect to their accuracy and had similar performance to human experts. It proved to be a highly robust and efficient approach in severely distorted data. This was demonstrated on patients with different pulmonary disorders. Conclusion: Our newly proposed algorithm is highly robust and universal. It works accurately even on severely distorted data, where the other tested algorithms failed. It does not require any pre-set thresholds or other patient-specific inputs. Consequently, it may be used with a broad spectrum of patients. It has the potential to replace current approaches to the breath detection in pulmonary function diagnostics.

  • Název v anglickém jazyce

    Novel approach to computerized breath detection in lung function diagnostics

  • Popis výsledku anglicky

    Background: Breath detection, i.e. its precise delineation in time is a crucial step in lung function data analysis as obtaining any clinically relevant index is based on the proper localization of breath ends. Current threshold or smoothing algorithms suffer from severe inaccuracy in cases of suboptimal data quality. Especially in infants, the precise analysis is of utmost importance. The key objective of our work is to design an algorithm for accurate breath detection in severely distorted data. Methods: Flow and gas concentration data from multiple breath washout test were the input information. Based on universal physiological characteristics of the respiratory tract we designed an algorithm for breath detection. Its accuracy was tested on severely distorted data from 19 patients with different types of breathing disorders. Its performance was compared to the performance of currently used algorithms and to the breath counts estimated by human experts. Results: The novel algorithm outperformed the threshold algorithms with respect to their accuracy and had similar performance to human experts. It proved to be a highly robust and efficient approach in severely distorted data. This was demonstrated on patients with different pulmonary disorders. Conclusion: Our newly proposed algorithm is highly robust and universal. It works accurately even on severely distorted data, where the other tested algorithms failed. It does not require any pre-set thresholds or other patient-specific inputs. Consequently, it may be used with a broad spectrum of patients. It has the potential to replace current approaches to the breath detection in pulmonary function diagnostics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10600 - Biological sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology and Medicine

  • ISSN

    0010-4825

  • e-ISSN

  • Svazek periodika

    101

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Kód UT WoS článku

    000446282300001

  • EID výsledku v databázi Scopus

    2-s2.0-85050890394