Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017106" target="_blank" >RIV/62690094:18470/20:50017106 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025520304849?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025520304849?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2020.05.051" target="_blank" >10.1016/j.ins.2020.05.051</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network
Popis výsledku v původním jazyce
Sleep-related breathing disorders are diseases related to pharyngeal airway collapse. It can lead to several health problems such as somnolence, poorer daytime cognitive performance, and cardiovascular morbidity and mortality. However, computer-aided diagnostic (CAD) tools play a very important role in the detection of breathing disorders. It is possible to measure breathing activity, but most approaches require some type of device placed on the human body. This paper proposes a novel methodology of an unobtrusive CAD system to the breathing disorder detection. Unobtrusive approach is ensured by ballistocardiography (BCG) sensors located on the measured bed. The significant pieces of information from the signals are extracted by Cartan curvatures. Thereafter, important features are separated from individual samples as an input to our 9-layer deep convolutional neural network. We achieved an average accuracy of 98.00%, sensitivity of 94.26%, and specificity of 99.22% on 4009 regular and 1307 disordered breathing samples. © 2020 Elsevier Inc.
Název v anglickém jazyce
Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network
Popis výsledku anglicky
Sleep-related breathing disorders are diseases related to pharyngeal airway collapse. It can lead to several health problems such as somnolence, poorer daytime cognitive performance, and cardiovascular morbidity and mortality. However, computer-aided diagnostic (CAD) tools play a very important role in the detection of breathing disorders. It is possible to measure breathing activity, but most approaches require some type of device placed on the human body. This paper proposes a novel methodology of an unobtrusive CAD system to the breathing disorder detection. Unobtrusive approach is ensured by ballistocardiography (BCG) sensors located on the measured bed. The significant pieces of information from the signals are extracted by Cartan curvatures. Thereafter, important features are separated from individual samples as an input to our 9-layer deep convolutional neural network. We achieved an average accuracy of 98.00%, sensitivity of 94.26%, and specificity of 99.22% on 4009 regular and 1307 disordered breathing samples. © 2020 Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Centrum rozvoje personalizované medicíny u věkem podmíněných onemocnění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
541
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
207-217
Kód UT WoS článku
000573604400003
EID výsledku v databázi Scopus
2-s2.0-85087765663