Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017106" target="_blank" >RIV/62690094:18470/20:50017106 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025520304849?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025520304849?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2020.05.051" target="_blank" >10.1016/j.ins.2020.05.051</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network

  • Popis výsledku v původním jazyce

    Sleep-related breathing disorders are diseases related to pharyngeal airway collapse. It can lead to several health problems such as somnolence, poorer daytime cognitive performance, and cardiovascular morbidity and mortality. However, computer-aided diagnostic (CAD) tools play a very important role in the detection of breathing disorders. It is possible to measure breathing activity, but most approaches require some type of device placed on the human body. This paper proposes a novel methodology of an unobtrusive CAD system to the breathing disorder detection. Unobtrusive approach is ensured by ballistocardiography (BCG) sensors located on the measured bed. The significant pieces of information from the signals are extracted by Cartan curvatures. Thereafter, important features are separated from individual samples as an input to our 9-layer deep convolutional neural network. We achieved an average accuracy of 98.00%, sensitivity of 94.26%, and specificity of 99.22% on 4009 regular and 1307 disordered breathing samples. © 2020 Elsevier Inc.

  • Název v anglickém jazyce

    Computer aided detection of breathing disorder from ballistocardiography signal using convolutional neural network

  • Popis výsledku anglicky

    Sleep-related breathing disorders are diseases related to pharyngeal airway collapse. It can lead to several health problems such as somnolence, poorer daytime cognitive performance, and cardiovascular morbidity and mortality. However, computer-aided diagnostic (CAD) tools play a very important role in the detection of breathing disorders. It is possible to measure breathing activity, but most approaches require some type of device placed on the human body. This paper proposes a novel methodology of an unobtrusive CAD system to the breathing disorder detection. Unobtrusive approach is ensured by ballistocardiography (BCG) sensors located on the measured bed. The significant pieces of information from the signals are extracted by Cartan curvatures. Thereafter, important features are separated from individual samples as an input to our 9-layer deep convolutional neural network. We achieved an average accuracy of 98.00%, sensitivity of 94.26%, and specificity of 99.22% on 4009 regular and 1307 disordered breathing samples. © 2020 Elsevier Inc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Centrum rozvoje personalizované medicíny u věkem podmíněných onemocnění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Svazek periodika

    541

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    207-217

  • Kód UT WoS článku

    000573604400003

  • EID výsledku v databázi Scopus

    2-s2.0-85087765663