Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018224" target="_blank" >RIV/62690094:18470/21:50018224 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0169260721002236?dgcid=rss_sd_all" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169260721002236?dgcid=rss_sd_all</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cmpb.2021.106149" target="_blank" >10.1016/j.cmpb.2021.106149</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements

  • Popis výsledku v původním jazyce

    Background and Objectives Automatic detection of breathing disorders plays an important role in the early signalization of respiratory diseases. Measuring methods can be based on electrocardiogram (ECG), sound, oximetry, or respiratory analysis. However, these approaches require devices placed on the human body or they are prone to disturbance by environmental influences. To solve these problems, we proposed a heart contraction mechanical trigger for unobtrusive detection of respiratory disorders from the mechanical measurement of cardiac contractions. We designed a novel method to calculate this mechanical trigger purely from measured mechanical signals without the use of ECG. Methods The approach is a built-on calculation of the so-called euclidean arc length from the signals. In comparison to previous researches, this system does not require any equipment attached to a person. This is achieved by locating the tensometers on the bed. Data from sensors are fused by the Cartan curvatures method to beat-to-beat vector input for the Convolutional neural network (CNN) classifier. Results In sum, 2281 disordered and 5130 normal breathing samples was collected for analysis. The experiments with use of 10-fold cross validation show that accuracy, sensitivity, and specificity reach values of 96.37%, 92.46%, and 98.11% respectively. Conclusions By the approach for detection, the system offers a novel way for a completely unobtrusive diagnosis of breathing-related health problems. The proposed solution can effectively be deployed in all clinical or home environments.

  • Název v anglickém jazyce

    Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements

  • Popis výsledku anglicky

    Background and Objectives Automatic detection of breathing disorders plays an important role in the early signalization of respiratory diseases. Measuring methods can be based on electrocardiogram (ECG), sound, oximetry, or respiratory analysis. However, these approaches require devices placed on the human body or they are prone to disturbance by environmental influences. To solve these problems, we proposed a heart contraction mechanical trigger for unobtrusive detection of respiratory disorders from the mechanical measurement of cardiac contractions. We designed a novel method to calculate this mechanical trigger purely from measured mechanical signals without the use of ECG. Methods The approach is a built-on calculation of the so-called euclidean arc length from the signals. In comparison to previous researches, this system does not require any equipment attached to a person. This is achieved by locating the tensometers on the bed. Data from sensors are fused by the Cartan curvatures method to beat-to-beat vector input for the Convolutional neural network (CNN) classifier. Results In sum, 2281 disordered and 5130 normal breathing samples was collected for analysis. The experiments with use of 10-fold cross validation show that accuracy, sensitivity, and specificity reach values of 96.37%, 92.46%, and 98.11% respectively. Conclusions By the approach for detection, the system offers a novel way for a completely unobtrusive diagnosis of breathing-related health problems. The proposed solution can effectively be deployed in all clinical or home environments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Methods and Programs in Biomedicine

  • ISSN

    0169-2607

  • e-ISSN

  • Svazek periodika

    207

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    IE - Irsko

  • Počet stran výsledku

    9

  • Strana od-do

    "Article number: 106149"

  • Kód UT WoS článku

    000679356900005

  • EID výsledku v databázi Scopus

    2-s2.0-85106245659