Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F18%3A10392818" target="_blank" >RIV/00216208:11130/18:10392818 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00064203:_____/18:10392818

  • Výsledek na webu

    <a href="https://doi.org/10.1109/SMC.2018.00186" target="_blank" >https://doi.org/10.1109/SMC.2018.00186</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC.2018.00186" target="_blank" >10.1109/SMC.2018.00186</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding

  • Popis výsledku v původním jazyce

    When it comes to the classification of brain signals in real-life applications, the training and the prediction data are often described by different distributions. Furthermore, diverse data sets, e.g., recorded from various subjects or tasks, can even exhibit distinct feature spaces. The fact that data that have to be classified are often only available in small amounts reinforces the need for techniques to generalize learned information, as performances of brain-computer interfaces (BCIs) are enhanced by increasing quantity of available data. In this paper, we apply transfer learning to a framework based on deep convolutional neural networks (deep ConvNets) to prove the transferability of learned patterns in error-related brain signals across different tasks. The experiments described in this paper demonstrate the usefulness of transfer learning, especially improving performances when only little data can be used to distinguish between erroneous and correct realization of a task. This effect could be delimited from a transfer of merely general brain signal characteristics, underlining the transfer of error-specific information. Furthermore, we could extract similar patterns in time-frequency analyses in identical channels, leading to selective high signal correlations between the two different paradigms. Classification on the intracranial data yields in median accuracies up to (81.50 +/- 9.49) %. Decoding on only 10% of the data without pre-training reaches performances of (54.76 +/- 3.56) %, compared to (64.95 +/- 0.79) % with pre-training.

  • Název v anglickém jazyce

    Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding

  • Popis výsledku anglicky

    When it comes to the classification of brain signals in real-life applications, the training and the prediction data are often described by different distributions. Furthermore, diverse data sets, e.g., recorded from various subjects or tasks, can even exhibit distinct feature spaces. The fact that data that have to be classified are often only available in small amounts reinforces the need for techniques to generalize learned information, as performances of brain-computer interfaces (BCIs) are enhanced by increasing quantity of available data. In this paper, we apply transfer learning to a framework based on deep convolutional neural networks (deep ConvNets) to prove the transferability of learned patterns in error-related brain signals across different tasks. The experiments described in this paper demonstrate the usefulness of transfer learning, especially improving performances when only little data can be used to distinguish between erroneous and correct realization of a task. This effect could be delimited from a transfer of merely general brain signal characteristics, underlining the transfer of error-specific information. Furthermore, we could extract similar patterns in time-frequency analyses in identical channels, leading to selective high signal correlations between the two different paradigms. Classification on the intracranial data yields in median accuracies up to (81.50 +/- 9.49) %. Decoding on only 10% of the data without pre-training reaches performances of (54.76 +/- 3.56) %, compared to (64.95 +/- 0.79) % with pre-training.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018

  • ISBN

    978-1-5386-6650-0

  • ISSN

    1062-922X

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    1046-1053

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    IEEE Syst Man &amp; Cybernet Soc

  • Datum konání akce

    7. 10. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000459884801024