Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F18%3A10392818" target="_blank" >RIV/00216208:11130/18:10392818 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064203:_____/18:10392818
Výsledek na webu
<a href="https://doi.org/10.1109/SMC.2018.00186" target="_blank" >https://doi.org/10.1109/SMC.2018.00186</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2018.00186" target="_blank" >10.1109/SMC.2018.00186</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding
Popis výsledku v původním jazyce
When it comes to the classification of brain signals in real-life applications, the training and the prediction data are often described by different distributions. Furthermore, diverse data sets, e.g., recorded from various subjects or tasks, can even exhibit distinct feature spaces. The fact that data that have to be classified are often only available in small amounts reinforces the need for techniques to generalize learned information, as performances of brain-computer interfaces (BCIs) are enhanced by increasing quantity of available data. In this paper, we apply transfer learning to a framework based on deep convolutional neural networks (deep ConvNets) to prove the transferability of learned patterns in error-related brain signals across different tasks. The experiments described in this paper demonstrate the usefulness of transfer learning, especially improving performances when only little data can be used to distinguish between erroneous and correct realization of a task. This effect could be delimited from a transfer of merely general brain signal characteristics, underlining the transfer of error-specific information. Furthermore, we could extract similar patterns in time-frequency analyses in identical channels, leading to selective high signal correlations between the two different paradigms. Classification on the intracranial data yields in median accuracies up to (81.50 +/- 9.49) %. Decoding on only 10% of the data without pre-training reaches performances of (54.76 +/- 3.56) %, compared to (64.95 +/- 0.79) % with pre-training.
Název v anglickém jazyce
Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding
Popis výsledku anglicky
When it comes to the classification of brain signals in real-life applications, the training and the prediction data are often described by different distributions. Furthermore, diverse data sets, e.g., recorded from various subjects or tasks, can even exhibit distinct feature spaces. The fact that data that have to be classified are often only available in small amounts reinforces the need for techniques to generalize learned information, as performances of brain-computer interfaces (BCIs) are enhanced by increasing quantity of available data. In this paper, we apply transfer learning to a framework based on deep convolutional neural networks (deep ConvNets) to prove the transferability of learned patterns in error-related brain signals across different tasks. The experiments described in this paper demonstrate the usefulness of transfer learning, especially improving performances when only little data can be used to distinguish between erroneous and correct realization of a task. This effect could be delimited from a transfer of merely general brain signal characteristics, underlining the transfer of error-specific information. Furthermore, we could extract similar patterns in time-frequency analyses in identical channels, leading to selective high signal correlations between the two different paradigms. Classification on the intracranial data yields in median accuracies up to (81.50 +/- 9.49) %. Decoding on only 10% of the data without pre-training reaches performances of (54.76 +/- 3.56) %, compared to (64.95 +/- 0.79) % with pre-training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
ISBN
978-1-5386-6650-0
ISSN
1062-922X
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1046-1053
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
IEEE Syst Man & Cybernet Soc
Datum konání akce
7. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000459884801024