UBAL: a Universal Bidirectional Activation-based Learning Rule for Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337712" target="_blank" >RIV/68407700:21730/19:00337712 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/abs/10.1145/3372422.3372443" target="_blank" >https://dl.acm.org/doi/abs/10.1145/3372422.3372443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3372422.3372443" target="_blank" >10.1145/3372422.3372443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UBAL: a Universal Bidirectional Activation-based Learning Rule for Neural Networks
Popis výsledku v původním jazyce
Artificial neural networks, in particular the deep end-to-end architectures trained by error backpropagation (BP), are currently the topmost used learning systems. However, learning in such systems is only loosely inspired by the actual neural mechanisms. Algorithms based on local activation differences were designed as a biologically plausible alternative to BP. We propose Universal Bidirectional Activation-based Learning, a novel neural model which enhances the contrastive Hebbian learning rule with special hyperparameters yielding a single learning rule that can perform multiple ways of learning, similarly to what is assumed about learning in the brain. Unlike others, our model consists of mutually dependent, yet separate weight matrices for different directions of activation propagation. We show that UBAL can learn different tasks (such as pattern retrieval, denoising, or classification) with different setups of the learning hyperparameters. We also demonstrate the performance of our algorithm on a machine learning benchmark (MNIST). The experimental results presented in this paper confirm that UBAL is comparable with a basic version BP-trained multilayer network and the related biologically-motivated models.
Název v anglickém jazyce
UBAL: a Universal Bidirectional Activation-based Learning Rule for Neural Networks
Popis výsledku anglicky
Artificial neural networks, in particular the deep end-to-end architectures trained by error backpropagation (BP), are currently the topmost used learning systems. However, learning in such systems is only loosely inspired by the actual neural mechanisms. Algorithms based on local activation differences were designed as a biologically plausible alternative to BP. We propose Universal Bidirectional Activation-based Learning, a novel neural model which enhances the contrastive Hebbian learning rule with special hyperparameters yielding a single learning rule that can perform multiple ways of learning, similarly to what is assumed about learning in the brain. Unlike others, our model consists of mutually dependent, yet separate weight matrices for different directions of activation propagation. We show that UBAL can learn different tasks (such as pattern retrieval, denoising, or classification) with different setups of the learning hyperparameters. We also demonstrate the performance of our algorithm on a machine learning benchmark (MNIST). The experimental results presented in this paper confirm that UBAL is comparable with a basic version BP-trained multilayer network and the related biologically-motivated models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172019082" target="_blank" >VI20172019082: Smart Camera - Dohledové centrum nové generace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2019 International Conference on Computational Intelligence and Intelligent Systems
ISBN
978-1-4503-7259-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
57-62
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Bangkok
Datum konání akce
23. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—