A novel deep learning-based method for automatic stereology of microglia cells from low magnification images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F24%3A10479067" target="_blank" >RIV/00216208:11140/24:10479067 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxNbxQX_m3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxNbxQX_m3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ntt.2024.107336" target="_blank" >10.1016/j.ntt.2024.107336</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel deep learning-based method for automatic stereology of microglia cells from low magnification images
Popis výsledku v původním jazyce
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20x) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60x greater efficiency than manual stereology (<1 min vs. TILDE OPERATOR+D91 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.
Název v anglickém jazyce
A novel deep learning-based method for automatic stereology of microglia cells from low magnification images
Popis výsledku anglicky
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20x) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60x greater efficiency than manual stereology (<1 min vs. TILDE OPERATOR+D91 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30502 - Other medical science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000787" target="_blank" >EF16_019/0000787: Centrum výzkumu infekčních onemocnění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurotoxicology and Teratology
ISSN
0892-0362
e-ISSN
1872-9738
Svazek periodika
102
Číslo periodika v rámci svazku
March-April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
107336
Kód UT WoS článku
001205983600001
EID výsledku v databázi Scopus
2-s2.0-85187172891