Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F15%3A10314679" target="_blank" >RIV/00216208:11150/15:10314679 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/15:00239784 RIV/60461373:22340/15:43899365
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.dsp.2015.05.011" target="_blank" >http://dx.doi.org/10.1016/j.dsp.2015.05.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dsp.2015.05.011" target="_blank" >10.1016/j.dsp.2015.05.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect
Popis výsledku v původním jazyce
This paper presents a novel method of Bayesian gait recognition using Microsoft (MS) Kinect image and depth sensors and skeleton tracking in three-dimensional space. Although video sequences acquired by a complex camera system enable a very precise data analysis, it is possible to use much simpler technical devices to analyze video frames with sufficient accuracy for many applications. The use of the MS Kinect allows a simple 3-D modeling using its image and depth sensors for data acquisition, resulting in a matrix of 640 x 480 elements used for spatial modeling of a moving body. The experimental part of the paper is devoted to the study of three data sets: (i) 18 individuals with Parkinson's disease, (ii) 18 healthy agematched controls, and (iii) 15 trained young individuals forming the second reference set. The proposed algorithm involves methods for the estimation of the average stride length and gait speed of individuals in these sets. Digital signal processing methods and Bayesian probability classification algorithms are then used for gait feature analysis to recognize individuals suspected of having Parkinson's disease. The results include the estimation of the characteristics of selected gait features for patients with Parkinson's disease and for individuals from the reference sets, presentation of decision boundaries, and comparison of classification efficiency for different features. The achieved accuracy of the probabilistic classification was 94.1%.
Název v anglickém jazyce
Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect
Popis výsledku anglicky
This paper presents a novel method of Bayesian gait recognition using Microsoft (MS) Kinect image and depth sensors and skeleton tracking in three-dimensional space. Although video sequences acquired by a complex camera system enable a very precise data analysis, it is possible to use much simpler technical devices to analyze video frames with sufficient accuracy for many applications. The use of the MS Kinect allows a simple 3-D modeling using its image and depth sensors for data acquisition, resulting in a matrix of 640 x 480 elements used for spatial modeling of a moving body. The experimental part of the paper is devoted to the study of three data sets: (i) 18 individuals with Parkinson's disease, (ii) 18 healthy agematched controls, and (iii) 15 trained young individuals forming the second reference set. The proposed algorithm involves methods for the estimation of the average stride length and gait speed of individuals in these sets. Digital signal processing methods and Bayesian probability classification algorithms are then used for gait feature analysis to recognize individuals suspected of having Parkinson's disease. The results include the estimation of the characteristics of selected gait features for patients with Parkinson's disease and for individuals from the reference sets, presentation of decision boundaries, and comparison of classification efficiency for different features. The achieved accuracy of the probabilistic classification was 94.1%.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Signal Processing: A Review Journal
ISSN
1051-2004
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
169-177
Kód UT WoS článku
000366072000014
EID výsledku v databázi Scopus
2-s2.0-84948083736