The MS Kinect Image and Depth Sensors Use for Gait Features Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F14%3A43897329" target="_blank" >RIV/60461373:22340/14:43897329 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11150/14:10321892
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7025460&queryText%3DThe+MS+Kinect+Image+and+Depth+Sensors+Use+for+Gait+Features+Detection" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7025460&queryText%3DThe+MS+Kinect+Image+and+Depth+Sensors+Use+for+Gait+Features+Detection</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICIP.2014.7025460" target="_blank" >10.1109/ICIP.2014.7025460</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The MS Kinect Image and Depth Sensors Use for Gait Features Detection
Popis výsledku v původním jazyce
Movement disorders, problems with motion and gait stability related to aging form a very intensively studied research area. The paper presents a contribution to these topics through the use of data acquired by motion sensors and namely image and depth sensors of the MS Kinect. While video sequences obtained by complex camera systems can be used for the precise gait features evaluation, it is possible to use much cheaper devices for diagnostic purposes accurate enough in many cases. The experimental partof the study presents video sequences and depth sensors data acquisition for 18 individuals with the Parkinson's disease and 18 healthy age-matched controls using the proposed graphical user interface in the clinical environment. Results presented include the estimation of gait features to distinguish gait disorders and to classify individuals in the early stage of possible serious diseases. The accuracy achieved was higher then 90 % for given sets of individuals.
Název v anglickém jazyce
The MS Kinect Image and Depth Sensors Use for Gait Features Detection
Popis výsledku anglicky
Movement disorders, problems with motion and gait stability related to aging form a very intensively studied research area. The paper presents a contribution to these topics through the use of data acquired by motion sensors and namely image and depth sensors of the MS Kinect. While video sequences obtained by complex camera systems can be used for the precise gait features evaluation, it is possible to use much cheaper devices for diagnostic purposes accurate enough in many cases. The experimental partof the study presents video sequences and depth sensors data acquisition for 18 individuals with the Parkinson's disease and 18 healthy age-matched controls using the proposed graphical user interface in the clinical environment. Results presented include the estimation of gait features to distinguish gait disorders and to classify individuals in the early stage of possible serious diseases. The accuracy achieved was higher then 90 % for given sets of individuals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE 2014 International Conference on Image Processing
ISBN
978-1-4799-5751-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
2271-2274
Název nakladatele
IEEE Institute of Electrical and Electronics Engineers
Místo vydání
Piscataway, New Jersey
Místo konání akce
Paris
Datum konání akce
27. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—