Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Use of the image and depth sensors of the Microsoft Kinect for the detection of gait disorders

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F15%3A43897947" target="_blank" >RIV/60461373:22340/15:43897947 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/15:00229136 RIV/00216208:11150/15:10314678

  • Výsledek na webu

    <a href="http://link.springer.com/content/pdf/10.1007%2Fs00521-015-1827-x.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2Fs00521-015-1827-x.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-015-1827-x" target="_blank" >10.1007/s00521-015-1827-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Use of the image and depth sensors of the Microsoft Kinect for the detection of gait disorders

  • Popis výsledku v původním jazyce

    This paper presents a novel method of gait recognition that uses the image and depth sensors of the Microsoft (MS) Kinect to track the skeleton of a moving body and allows for simple human-machine interaction. While video sequences acquired by complex camera systems enable very precise data analyses and motion detection, much simpler technical devices can be used to analyze video frames with sufficient accuracy in many cases. The experimental part of this paper is devoted to gait data acquisition from 18 individuals with Parkinson's disease and 18 healthy age-matched controls via the proposed MS Kinect graphical user interface. The methods designed for video frame data processing include the selection of gait segments and data filtering for the estimation of chosen gait characteristics. The proposed computational algorithms for the processing of the matrices acquired by the image and depth sensors were then used for spatial modeling of the moving bodies and the estimation of selected gait features. Normalized mean stride lengths were evaluated for the individuals with Parkinson's disease and those in the control group and were determined to be 0.38 and 0.53 m, respectively. These mean stride lengths were then used as features for classification. The achieved accuracy was >90 %, which suggests the potential of the use of the image and depth sensors of the MS Kinect for these applications. Further potential increases in classification accuracy via additional biosensors and body features are also discussed.

  • Název v anglickém jazyce

    Use of the image and depth sensors of the Microsoft Kinect for the detection of gait disorders

  • Popis výsledku anglicky

    This paper presents a novel method of gait recognition that uses the image and depth sensors of the Microsoft (MS) Kinect to track the skeleton of a moving body and allows for simple human-machine interaction. While video sequences acquired by complex camera systems enable very precise data analyses and motion detection, much simpler technical devices can be used to analyze video frames with sufficient accuracy in many cases. The experimental part of this paper is devoted to gait data acquisition from 18 individuals with Parkinson's disease and 18 healthy age-matched controls via the proposed MS Kinect graphical user interface. The methods designed for video frame data processing include the selection of gait segments and data filtering for the estimation of chosen gait characteristics. The proposed computational algorithms for the processing of the matrices acquired by the image and depth sensors were then used for spatial modeling of the moving bodies and the estimation of selected gait features. Normalized mean stride lengths were evaluated for the individuals with Parkinson's disease and those in the control group and were determined to be 0.38 and 0.53 m, respectively. These mean stride lengths were then used as features for classification. The achieved accuracy was >90 %, which suggests the potential of the use of the image and depth sensors of the MS Kinect for these applications. Further potential increases in classification accuracy via additional biosensors and body features are also discussed.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    1621-1629

  • Kód UT WoS článku

    000360005900009

  • EID výsledku v databázi Scopus