Image recognition based on deep learning in Haemonchus contortus motility assays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F22%3A10450813" target="_blank" >RIV/00216208:11160/22:10450813 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kDJ8L4IKjP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kDJ8L4IKjP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csbj.2022.05.014" target="_blank" >10.1016/j.csbj.2022.05.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image recognition based on deep learning in Haemonchus contortus motility assays
Popis výsledku v původním jazyce
Poor efficacy of some anthelmintics and rising concerns about the widespread drug resistance have highlighted the need for new drug discovery. The parasitic nematode Haemonchus contortus is an important model organism widely used for studies of drug resistance and drug screening with the current gold standard being the motility assay. We applied a deep learning approach Mask R-CNN for analysing motility videos containing varying rates of motile worms and compared it to other commonly used algorithms with different levels of complexity, namely the Wiggle Index and the Wide Field-of-View Nematode Tracking Platform. Mask R-CNN consistently outperformed the other algorithms in terms of the detection of worms as well as the precision of motility forecasts, having a mean absolute percentage error of 7.6% and a mean absolute error of 5.6% for the detection and motility forecasts, respectively. Using Mask R-CNN for motility assays confirmed the common problem with algorithms that use non-maximum suppression in detecting overlapping objects, which negatively impacts the overall precision. The use of intersect over union as a measure of the classification of motile / non-motile instances had an overall accuracy of 89%, indicating that it is a viable alternative to previously used methods based on movement characteristics, such as body bends. In comparison to the existing methods evaluated here, Mask R-CNN performed better and we anticipate that this method will broaden the number of possible approaches to video analysis of worm motility.
Název v anglickém jazyce
Image recognition based on deep learning in Haemonchus contortus motility assays
Popis výsledku anglicky
Poor efficacy of some anthelmintics and rising concerns about the widespread drug resistance have highlighted the need for new drug discovery. The parasitic nematode Haemonchus contortus is an important model organism widely used for studies of drug resistance and drug screening with the current gold standard being the motility assay. We applied a deep learning approach Mask R-CNN for analysing motility videos containing varying rates of motile worms and compared it to other commonly used algorithms with different levels of complexity, namely the Wiggle Index and the Wide Field-of-View Nematode Tracking Platform. Mask R-CNN consistently outperformed the other algorithms in terms of the detection of worms as well as the precision of motility forecasts, having a mean absolute percentage error of 7.6% and a mean absolute error of 5.6% for the detection and motility forecasts, respectively. Using Mask R-CNN for motility assays confirmed the common problem with algorithms that use non-maximum suppression in detecting overlapping objects, which negatively impacts the overall precision. The use of intersect over union as a measure of the classification of motile / non-motile instances had an overall accuracy of 89%, indicating that it is a viable alternative to previously used methods based on movement characteristics, such as body bends. In comparison to the existing methods evaluated here, Mask R-CNN performed better and we anticipate that this method will broaden the number of possible approaches to video analysis of worm motility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30104 - Pharmacology and pharmacy
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Zvýšení účinnosti a bezpečnosti léčiv a nutraceutik: moderní metody - nové výzvy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational and Structural Biotechnology Journal
ISSN
2001-0370
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
SE - Švédské království
Počet stran výsledku
9
Strana od-do
2372-2380
Kód UT WoS článku
000805642000003
EID výsledku v databázi Scopus
—