Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The tree property and the continuum function below aleph_omega

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F16%3A10325730" target="_blank" >RIV/00216208:11210/16:10325730 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The tree property and the continuum function below aleph_omega

  • Popis výsledku v původním jazyce

    Starting from a Laver-indestructible supercompact $kappa$ and a weakly compact $lambda$ above $kappa$, we show there is a forcing extension where $kappa$ is a strong limit singular cardinal with cofinality $omega$, $2^kappa = kappa^{+3} = lambda^+$, and the tree property holds at $kappa^{++} = lambda$. Next we generalize this result to an arbitrary cardinal $mu$ such that $kappa <mathrm{cf}(mu)$ and $lambda^+ le mu$. This result provides more information about possible relationships between the tree property and the continuum function.

  • Název v anglickém jazyce

    The tree property and the continuum function below aleph_omega

  • Popis výsledku anglicky

    Starting from a Laver-indestructible supercompact $kappa$ and a weakly compact $lambda$ above $kappa$, we show there is a forcing extension where $kappa$ is a strong limit singular cardinal with cofinality $omega$, $2^kappa = kappa^{+3} = lambda^+$, and the tree property holds at $kappa^{++} = lambda$. Next we generalize this result to an arbitrary cardinal $mu$ such that $kappa <mathrm{cf}(mu)$ and $lambda^+ le mu$. This result provides more information about possible relationships between the tree property and the continuum function.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů