Chains, antichains, and complements in infinite partition lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383772" target="_blank" >RIV/00216208:11320/18:10383772 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00012-018-0514-z" target="_blank" >https://doi.org/10.1007/s00012-018-0514-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-018-0514-z" target="_blank" >10.1007/s00012-018-0514-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chains, antichains, and complements in infinite partition lattices
Popis výsledku v původním jazyce
We consider the partition lattice Pi(lambda) on any set of transfinite cardinality lambda and properties of Pi(lambda) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly lambda; (II) there are maximal chains in Pi(lambda) of cardinality > lambda; (III) a regular cardinal lambda is strongly inaccessible if and only if every maximal chain in II(lambda) has size at least lambda; if lambda is a singular cardinal and mu(<kappa) < lambda <= mu(kappa) for sonic cardinals kappa and (possibly finite) mu, then there is a maximal chain of size < lambda in Pi(lambda); (IV) every non-trivial maximal antichain in II(A) has cardinality between lambda and 2 lambda, and these bounds are realised. Moreover, there are maximal antichains of cardinality max(lambda, 2(kappa)) for any kappa <= lambda; (V) all cardinals of the form lambda(kappa) with 0 <= kappa <= lambda occur as the cardinalities of sets of complements to some partition P is an element of II(lambda), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.
Název v anglickém jazyce
Chains, antichains, and complements in infinite partition lattices
Popis výsledku anglicky
We consider the partition lattice Pi(lambda) on any set of transfinite cardinality lambda and properties of Pi(lambda) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly lambda; (II) there are maximal chains in Pi(lambda) of cardinality > lambda; (III) a regular cardinal lambda is strongly inaccessible if and only if every maximal chain in II(lambda) has size at least lambda; if lambda is a singular cardinal and mu(<kappa) < lambda <= mu(kappa) for sonic cardinals kappa and (possibly finite) mu, then there is a maximal chain of size < lambda in Pi(lambda); (IV) every non-trivial maximal antichain in II(A) has cardinality between lambda and 2 lambda, and these bounds are realised. Moreover, there are maximal antichains of cardinality max(lambda, 2(kappa)) for any kappa <= lambda; (V) all cardinals of the form lambda(kappa) with 0 <= kappa <= lambda occur as the cardinalities of sets of complements to some partition P is an element of II(lambda), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-15479S" target="_blank" >GA14-15479S: Teorie reprezentací (strukturní rozklady a jejich meze)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Svazek periodika
79
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000431737200020
EID výsledku v databázi Scopus
2-s2.0-85045969891