Definability of satisfaction in outer models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F16%3A10336147" target="_blank" >RIV/00216208:11210/16:10336147 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/jsl.2016.33" target="_blank" >http://dx.doi.org/10.1017/jsl.2016.33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2016.33" target="_blank" >10.1017/jsl.2016.33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Definability of satisfaction in outer models
Popis výsledku v původním jazyce
Let M be a transitive model of ZFC. We say that a transitive model of ZFC, N , is an outer model of M if M is a subset of N and the ordinals coincide. The outer model theory of M is the collection of all formulas with parameters from M which hold in all outer models of M (which exist in a universe in which M is countable; this is independent of the choice of such a universe). Satisfaction defined with respect to outer models can be seen as a useful strengthening of first-order logic. Starting from an inaccessible cardinal κ, we show that it is consistent to have a transitive model M of ZFC of size κ in which the outer model theory is lightface definable, and moreover M satisfies V = HOD. The proof combines the infinitary logic L_infinity, omega, Barwise's results on admissible sets, and a new forcing iteration of length strictly less than κ+ which manipulates the continuum function on certain regular cardinals below κ. In the appendix, we review some unpublished results of Mack Stanley which are directly related to our topic.
Název v anglickém jazyce
Definability of satisfaction in outer models
Popis výsledku anglicky
Let M be a transitive model of ZFC. We say that a transitive model of ZFC, N , is an outer model of M if M is a subset of N and the ordinals coincide. The outer model theory of M is the collection of all formulas with parameters from M which hold in all outer models of M (which exist in a universe in which M is countable; this is independent of the choice of such a universe). Satisfaction defined with respect to outer models can be seen as a useful strengthening of first-order logic. Starting from an inaccessible cardinal κ, we show that it is consistent to have a transitive model M of ZFC of size κ in which the outer model theory is lightface definable, and moreover M satisfies V = HOD. The proof combines the infinitary logic L_infinity, omega, Barwise's results on admissible sets, and a new forcing iteration of length strictly less than κ+ which manipulates the continuum function on certain regular cardinals below κ. In the appendix, we review some unpublished results of Mack Stanley which are directly related to our topic.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1047-1068
Kód UT WoS článku
000384284500016
EID výsledku v databázi Scopus
—