The tree property at aleph_{omega+2} with a finite gap
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F17%3A10362111" target="_blank" >RIV/00216208:11210/17:10362111 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11210/17:10362112
Výsledek na webu
<a href="http://www.winterschool.eu/files/995-The_tree_property_at_aleph_omega2_with_a_finite_gap1027058508.pdf" target="_blank" >http://www.winterschool.eu/files/995-The_tree_property_at_aleph_omega2_with_a_finite_gap1027058508.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The tree property at aleph_{omega+2} with a finite gap
Popis výsledku v původním jazyce
Let $kappa$ be an infinite regular cardinal. The tree property at $kappa$ is a compactness principle which says that every $kappa$-tree has a cofinal branch. Obtaining the tree property at the double successor of an infinite regular cardinal $kappa$ is relatively easy and only a weakly compact cardinal is required (''Mitchell forcing''). The situation is more complex when we wish to get this result at the double successor of a singular strong limit cardinal $kappa$ since we need to ensure the failure of SCH at $kappa$. In this talk we will discuss the important case of $aleph_omega$ and show that if $kappa$ is a certain large cardinal (not too large), and $1 < n<omega$ is fixed, then there is a forcing $P$ such that the following hold in $V^P$: begin{itemize} item $kappa = aleph_omega$ is strong limit, item $2^{alephomega}=aleph_{omega+n}$, and item The tree property holds at $aleph_{omega+2}$. end{itemize} The forcing $P$ is a combination of several subforcings which first prepare the universe and then use a combination of the Mitchell forcing and the Prikry forcing with collapses to force the tree property.
Název v anglickém jazyce
The tree property at aleph_{omega+2} with a finite gap
Popis výsledku anglicky
Let $kappa$ be an infinite regular cardinal. The tree property at $kappa$ is a compactness principle which says that every $kappa$-tree has a cofinal branch. Obtaining the tree property at the double successor of an infinite regular cardinal $kappa$ is relatively easy and only a weakly compact cardinal is required (''Mitchell forcing''). The situation is more complex when we wish to get this result at the double successor of a singular strong limit cardinal $kappa$ since we need to ensure the failure of SCH at $kappa$. In this talk we will discuss the important case of $aleph_omega$ and show that if $kappa$ is a certain large cardinal (not too large), and $1 < n<omega$ is fixed, then there is a forcing $P$ such that the following hold in $V^P$: begin{itemize} item $kappa = aleph_omega$ is strong limit, item $2^{alephomega}=aleph_{omega+n}$, and item The tree property holds at $aleph_{omega+2}$. end{itemize} The forcing $P$ is a combination of several subforcings which first prepare the universe and then use a combination of the Mitchell forcing and the Prikry forcing with collapses to force the tree property.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů