Identifying Politically Connected Firms: A Machine Learning Approach*
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11220%2F24%3A10471998" target="_blank" >RIV/00216208:11220/24:10471998 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vA009a1SWs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vA009a1SWs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/obes.12586" target="_blank" >10.1111/obes.12586</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identifying Politically Connected Firms: A Machine Learning Approach*
Popis výsledku v původním jazyce
This article introduces machine learning techniques to identify politically connected firms. By assembling information from publicly available sources and the Orbis company database, we constructed a novel firm population dataset from Czechia in which various forms of political connections can be determined. The data about firms' connections are unique and comprehensive. They include political donations by the firm, having members of managerial boards who donated to a political party, and having members of boards who ran for political office. The results indicate that over 85% of firms with political connections can be accurately identified by the proposed algorithms. The model obtains this high accuracy by using only firm-level financial and industry indicators that are widely available in most countries. These findings suggest that machine learning algorithms could be used by public institutions to improve the identification of politically connected firms with potentially large conflicts of interest.
Název v anglickém jazyce
Identifying Politically Connected Firms: A Machine Learning Approach*
Popis výsledku anglicky
This article introduces machine learning techniques to identify politically connected firms. By assembling information from publicly available sources and the Orbis company database, we constructed a novel firm population dataset from Czechia in which various forms of political connections can be determined. The data about firms' connections are unique and comprehensive. They include political donations by the firm, having members of managerial boards who donated to a political party, and having members of boards who ran for political office. The results indicate that over 85% of firms with political connections can be accurately identified by the proposed algorithms. The model obtains this high accuracy by using only firm-level financial and industry indicators that are widely available in most countries. These findings suggest that machine learning algorithms could be used by public institutions to improve the identification of politically connected firms with potentially large conflicts of interest.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50501 - Law
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Oxford Bulletin of Economics and Statistics
ISSN
0305-9049
e-ISSN
1468-0084
Svazek periodika
86
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
137-155
Kód UT WoS článku
001119591400001
EID výsledku v databázi Scopus
2-s2.0-85178240645