Predictive Bankruptcy of European e-Commerce: Credit Underwriters Inexperience and Self-assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F17%3A10365696" target="_blank" >RIV/00216208:11230/17:10365696 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-49559-0_9" target="_blank" >http://dx.doi.org/10.1007/978-3-319-49559-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-49559-0_9" target="_blank" >10.1007/978-3-319-49559-0_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive Bankruptcy of European e-Commerce: Credit Underwriters Inexperience and Self-assessment
Popis výsledku v původním jazyce
In the current competitive and uncertain e-commerce environment, businesses have the need to predict in advance their likelihood of falling into bankruptcy. The central focus of this paper is to statistically model through different approaches the bankruptcy probability of e-commerce companies in Europe. The authors examine the econometric techniques, two-step cluster, logistic regression, discriminant analysis, data mining tree, and ROC curves, to classify these companies into "bankrupt" and "not bankrupt". This paper finds also evidences about the current credit underwriting inexperience among several financial institutions. The classification approaches included in this paper may be applied in real working practice whether by credit underwriters or by business decision-makers. The research was developed using financial and accounting information available in the Bureau van Dijk database. This paper suggests further analytical developments in the field of predictive bankruptcies and recommends improvements on the credit evaluation scorecards such as the inclusion of advanced online metrics to increase the accuracy of the creditworthiness evaluation of an e-commerce company.
Název v anglickém jazyce
Predictive Bankruptcy of European e-Commerce: Credit Underwriters Inexperience and Self-assessment
Popis výsledku anglicky
In the current competitive and uncertain e-commerce environment, businesses have the need to predict in advance their likelihood of falling into bankruptcy. The central focus of this paper is to statistically model through different approaches the bankruptcy probability of e-commerce companies in Europe. The authors examine the econometric techniques, two-step cluster, logistic regression, discriminant analysis, data mining tree, and ROC curves, to classify these companies into "bankrupt" and "not bankrupt". This paper finds also evidences about the current credit underwriting inexperience among several financial institutions. The classification approaches included in this paper may be applied in real working practice whether by credit underwriters or by business decision-makers. The research was developed using financial and accounting information available in the Bureau van Dijk database. This paper suggests further analytical developments in the field of predictive bankruptcies and recommends improvements on the credit evaluation scorecards such as the inclusion of advanced online metrics to increase the accuracy of the creditworthiness evaluation of an e-commerce company.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
New Trends in Finance and Accounting
ISBN
978-3-319-49559-0
ISSN
2198-7246
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
93-104
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Místo konání akce
Prague
Datum konání akce
27. 5. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000416113500009