Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F18%3A10375185" target="_blank" >RIV/00216208:11230/18:10375185 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/18:00489264 RIV/00216208:11320/18:10375185

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10589-018-9985-2" target="_blank" >https://doi.org/10.1007/s10589-018-9985-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10589-018-9985-2" target="_blank" >10.1007/s10589-018-9985-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

  • Popis výsledku v původním jazyce

    We consider general nonlinear programming problems with cardinality constraints. By relaxing the binary variables which appear in the natural mixed-integer programming formulation, we obtain an almost equivalent nonlinear programming problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type regularization method to obtain a sequence of easier to solve problems and investigate the convergence of the obtained KKT points. We show that such a sequence converges to an S-stationary point, which corresponds to a local minimizer of the original problem under the assumption of convexity. Additionally, we consider portfolio optimization problems where we minimize a risk measure under a cardinality constraint on the portfolio. Various risk measures are considered, in particular Value-at-Risk and Conditional Value-at-Risk under normal distribution of returns and their robust counterparts under moment conditions. For these investment problems formulated as nonlinear programming problems with cardinality constraints we perform a numerical study on a large number of simulated instances taken from the literature and illuminate the computational performance of the Scholtes-type regularization method in comparison to other considered solution approaches: a mixed-integer solver, a direct continuous reformulation solver and the Kanzow-Schwartz regularization method, which has already been applied to Markowitz portfolio problems.

  • Název v anglickém jazyce

    Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

  • Popis výsledku anglicky

    We consider general nonlinear programming problems with cardinality constraints. By relaxing the binary variables which appear in the natural mixed-integer programming formulation, we obtain an almost equivalent nonlinear programming problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type regularization method to obtain a sequence of easier to solve problems and investigate the convergence of the obtained KKT points. We show that such a sequence converges to an S-stationary point, which corresponds to a local minimizer of the original problem under the assumption of convexity. Additionally, we consider portfolio optimization problems where we minimize a risk measure under a cardinality constraint on the portfolio. Various risk measures are considered, in particular Value-at-Risk and Conditional Value-at-Risk under normal distribution of returns and their robust counterparts under moment conditions. For these investment problems formulated as nonlinear programming problems with cardinality constraints we perform a numerical study on a large number of simulated instances taken from the literature and illuminate the computational performance of the Scholtes-type regularization method in comparison to other considered solution approaches: a mixed-integer solver, a direct continuous reformulation solver and the Kanzow-Schwartz regularization method, which has already been applied to Markowitz portfolio problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Optimization and Applications

  • ISSN

    0926-6003

  • e-ISSN

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    503-530

  • Kód UT WoS článku

    000431036800007

  • EID výsledku v databázi Scopus

    2-s2.0-85042236326