Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F18%3A10375185" target="_blank" >RIV/00216208:11230/18:10375185 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/18:00489264 RIV/00216208:11320/18:10375185
Výsledek na webu
<a href="https://doi.org/10.1007/s10589-018-9985-2" target="_blank" >https://doi.org/10.1007/s10589-018-9985-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10589-018-9985-2" target="_blank" >10.1007/s10589-018-9985-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization
Popis výsledku v původním jazyce
We consider general nonlinear programming problems with cardinality constraints. By relaxing the binary variables which appear in the natural mixed-integer programming formulation, we obtain an almost equivalent nonlinear programming problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type regularization method to obtain a sequence of easier to solve problems and investigate the convergence of the obtained KKT points. We show that such a sequence converges to an S-stationary point, which corresponds to a local minimizer of the original problem under the assumption of convexity. Additionally, we consider portfolio optimization problems where we minimize a risk measure under a cardinality constraint on the portfolio. Various risk measures are considered, in particular Value-at-Risk and Conditional Value-at-Risk under normal distribution of returns and their robust counterparts under moment conditions. For these investment problems formulated as nonlinear programming problems with cardinality constraints we perform a numerical study on a large number of simulated instances taken from the literature and illuminate the computational performance of the Scholtes-type regularization method in comparison to other considered solution approaches: a mixed-integer solver, a direct continuous reformulation solver and the Kanzow-Schwartz regularization method, which has already been applied to Markowitz portfolio problems.
Název v anglickém jazyce
Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization
Popis výsledku anglicky
We consider general nonlinear programming problems with cardinality constraints. By relaxing the binary variables which appear in the natural mixed-integer programming formulation, we obtain an almost equivalent nonlinear programming problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type regularization method to obtain a sequence of easier to solve problems and investigate the convergence of the obtained KKT points. We show that such a sequence converges to an S-stationary point, which corresponds to a local minimizer of the original problem under the assumption of convexity. Additionally, we consider portfolio optimization problems where we minimize a risk measure under a cardinality constraint on the portfolio. Various risk measures are considered, in particular Value-at-Risk and Conditional Value-at-Risk under normal distribution of returns and their robust counterparts under moment conditions. For these investment problems formulated as nonlinear programming problems with cardinality constraints we perform a numerical study on a large number of simulated instances taken from the literature and illuminate the computational performance of the Scholtes-type regularization method in comparison to other considered solution approaches: a mixed-integer solver, a direct continuous reformulation solver and the Kanzow-Schwartz regularization method, which has already been applied to Markowitz portfolio problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Optimization and Applications
ISSN
0926-6003
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
503-530
Kód UT WoS článku
000431036800007
EID výsledku v databázi Scopus
2-s2.0-85042236326