A chance constrained investment problem with portfolio variance and skewness criteria - solution technique based on the Successive Iterative Regularization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10326688" target="_blank" >RIV/00216208:11320/16:10326688 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A chance constrained investment problem with portfolio variance and skewness criteria - solution technique based on the Successive Iterative Regularization
Popis výsledku v původním jazyce
We deal with an investment problem, where the variance of a portfolio is minimized and at the same time the skewness is maximized. Moreover, we impose a chance (probabilistic) constraint on the portfolio return which must be fulfilled with a high probability. This leads to a difficult nonconvex multiobjective stochastic programming problem. Under discretely distributed returns, this problem can be solved using the CCP-SIR solver (Chance Constrained Problems: Successive Iterative Regularization) which has been recently introduced by Adam and Branda [1]. This algorithm relies on a relaxed nonlinear programming problem and its regularized version obtained by enlarging the set of feasible solutions using regularizing functions. These both formulations as well as the solution technique are discussed in details. We report the results for a real life portfolio problem of a small investor. We compare the CCP-SIR solver with BONMIN applied to the deterministic mixed-integer reformulation.
Název v anglickém jazyce
A chance constrained investment problem with portfolio variance and skewness criteria - solution technique based on the Successive Iterative Regularization
Popis výsledku anglicky
We deal with an investment problem, where the variance of a portfolio is minimized and at the same time the skewness is maximized. Moreover, we impose a chance (probabilistic) constraint on the portfolio return which must be fulfilled with a high probability. This leads to a difficult nonconvex multiobjective stochastic programming problem. Under discretely distributed returns, this problem can be solved using the CCP-SIR solver (Chance Constrained Problems: Successive Iterative Regularization) which has been recently introduced by Adam and Branda [1]. This algorithm relies on a relaxed nonlinear programming problem and its regularized version obtained by enlarging the set of feasible solutions using regularizing functions. These both formulations as well as the solution technique are discussed in details. We report the results for a real life portfolio problem of a small investor. We compare the CCP-SIR solver with BONMIN applied to the deterministic mixed-integer reformulation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016)
ISBN
978-80-7494-296-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
67-72
Název nakladatele
Technical University of Liberec
Místo vydání
Liberec
Místo konání akce
Liberec, Czech Republic
Datum konání akce
6. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000385239500012