Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of vegetation above the tree line in the Krkonoše Mts. National Park using remote sensing multispectral data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10325715" target="_blank" >RIV/00216208:11310/16:10325715 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://web.natur.cuni.cz/gis/aucg2/index.php/AUC_Geographica/article/view/69" target="_blank" >http://web.natur.cuni.cz/gis/aucg2/index.php/AUC_Geographica/article/view/69</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/23361980.2016.10" target="_blank" >10.14712/23361980.2016.10</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of vegetation above the tree line in the Krkonoše Mts. National Park using remote sensing multispectral data

  • Popis výsledku v původním jazyce

    This paper compares suitability of multispectral data with different spatial and spectral resolutions for classifications of vegetation above the tree line in the Krkonoše Mts. National Park. Two legends were proposed: the detailed one with twelve classes, and simplified legend with eight classes. Aerial orthorectified images (orthoimages) with very high spatial resolution (12.5 cm) and four spectral bands have been examined using the object based classification. Satellite data WorldView-2 (WV-2) with high spatial resolution (2 metres) and eight spectral bands have been examined using object based classification and per-pixel classification. Per-pixel classification has been applied also to the freely available Landsat 8 data (spatial resolution 30 metres, seven spectral bands). Of the algorithms for per-pixel classification, the following classifiers were compared: maximum likelihood classification (MLC), support vector machine (SVM), and neural net (NN). The object based classification utilized the example-based approach and SVM algorithm (all available in ENVI 5.2). Both legends (simplified and detailed ones) show best results in the case of orthoimages (overall accuracy 83.56% and 71.96% respectively, Kappa coefficient 0.8 and 0.65 respectively). The WV-2 classification brought best results using the object based approach and simplified legend (68.4%); in the case of per-pixel classification it was the SVM method (RBF) and detailed legend (60.82%). Landsat data were best classified using the MLC (78.31%). Our research confirmed that Landsat data are sufficient to get a general overview of basic land cover classes above the tree line in the Krkonoše Mts. National Park. Based on the comparison of the data with different spectral and spatial resolution we can however conclude that very high spatial resolution is the decisive feature that is essential to reach high overall classification accuracy in the detailed level.

  • Název v anglickém jazyce

    Classification of vegetation above the tree line in the Krkonoše Mts. National Park using remote sensing multispectral data

  • Popis výsledku anglicky

    This paper compares suitability of multispectral data with different spatial and spectral resolutions for classifications of vegetation above the tree line in the Krkonoše Mts. National Park. Two legends were proposed: the detailed one with twelve classes, and simplified legend with eight classes. Aerial orthorectified images (orthoimages) with very high spatial resolution (12.5 cm) and four spectral bands have been examined using the object based classification. Satellite data WorldView-2 (WV-2) with high spatial resolution (2 metres) and eight spectral bands have been examined using object based classification and per-pixel classification. Per-pixel classification has been applied also to the freely available Landsat 8 data (spatial resolution 30 metres, seven spectral bands). Of the algorithms for per-pixel classification, the following classifiers were compared: maximum likelihood classification (MLC), support vector machine (SVM), and neural net (NN). The object based classification utilized the example-based approach and SVM algorithm (all available in ENVI 5.2). Both legends (simplified and detailed ones) show best results in the case of orthoimages (overall accuracy 83.56% and 71.96% respectively, Kappa coefficient 0.8 and 0.65 respectively). The WV-2 classification brought best results using the object based approach and simplified legend (68.4%); in the case of per-pixel classification it was the SVM method (RBF) and detailed legend (60.82%). Landsat data were best classified using the MLC (78.31%). Our research confirmed that Landsat data are sufficient to get a general overview of basic land cover classes above the tree line in the Krkonoše Mts. National Park. Based on the comparison of the data with different spectral and spatial resolution we can however conclude that very high spatial resolution is the decisive feature that is essential to reach high overall classification accuracy in the detailed level.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DE - Zemský magnetismus, geodesie, geografie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis Carolinae, Geographica

  • ISSN

    0300-5402

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    17

  • Strana od-do

    113-129

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84982166378