Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10480003" target="_blank" >RIV/00216208:11310/23:10480003 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Sl5jYdnCE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Sl5jYdnCE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2023.100984" target="_blank" >10.1016/j.rineng.2023.100984</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques

  • Popis výsledku v původním jazyce

    Warm Mix Asphalts (WMAs) are asphalt concretes produced at lower temperatures than traditional Hot Mix Asphalts (HMAs). Nonetheless, the above is not enough to diminish the environmental impacts associated with the road infrastructure industry. Accordingly, incorporating Recycled Concrete Aggregate (RCA) as a partial replacement for Natural Aggregates (NAs) in WMA design has been gaining notoriety in the literature as a viable alternative to increase sustainability. However, the eco-friendly manufacturing of WMA with RCA contents (WMA-RCA) is not easy to obtain satisfactorily because the RCA causes alterations in the mix design. Thus, this research proposes three (3) methods to determine the optimal design conditions (coarse RCA content) that minimize the environmental burdens caused by WMA-RCA production. The first method is a mathematical model based on Multiple Linear Regression (MLR), which is used as a benchmark for the other two methods. The second and third methods are computational models based on Artificial Intelligence (AI), i.e., Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs), respectively. Notably, the Life Cycle Assessment (LCA) was employed as the theoretical framework to support all the proposed models. Consequently, this study concludes that: (i) all the proposed methodological alternatives achieve results with a great accuracy; (ii) the GAs model is the most precise method in terms of error minimization; (iii) the MLR model is the fastest method in terms of execution time; and (iv) the ANNs model is the method that requires the longest time of running, and its exactness is at a midpoint concerning the other models.

  • Název v anglickém jazyce

    Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques

  • Popis výsledku anglicky

    Warm Mix Asphalts (WMAs) are asphalt concretes produced at lower temperatures than traditional Hot Mix Asphalts (HMAs). Nonetheless, the above is not enough to diminish the environmental impacts associated with the road infrastructure industry. Accordingly, incorporating Recycled Concrete Aggregate (RCA) as a partial replacement for Natural Aggregates (NAs) in WMA design has been gaining notoriety in the literature as a viable alternative to increase sustainability. However, the eco-friendly manufacturing of WMA with RCA contents (WMA-RCA) is not easy to obtain satisfactorily because the RCA causes alterations in the mix design. Thus, this research proposes three (3) methods to determine the optimal design conditions (coarse RCA content) that minimize the environmental burdens caused by WMA-RCA production. The first method is a mathematical model based on Multiple Linear Regression (MLR), which is used as a benchmark for the other two methods. The second and third methods are computational models based on Artificial Intelligence (AI), i.e., Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs), respectively. Notably, the Life Cycle Assessment (LCA) was employed as the theoretical framework to support all the proposed models. Consequently, this study concludes that: (i) all the proposed methodological alternatives achieve results with a great accuracy; (ii) the GAs model is the most precise method in terms of error minimization; (iii) the MLR model is the fastest method in terms of execution time; and (iv) the ANNs model is the method that requires the longest time of running, and its exactness is at a midpoint concerning the other models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

    2590-1230

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    100984

  • Kód UT WoS článku

    000949879800001

  • EID výsledku v databázi Scopus

    2-s2.0-85152912046