Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convolutional neural networks for urban green areas semantic segmentation on Sentinel-2 data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10486258" target="_blank" >RIV/00216208:11310/24:10486258 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21110/24:00376522

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2KJ7sDz~3g" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2KJ7sDz~3g</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rsase.2024.101238" target="_blank" >10.1016/j.rsase.2024.101238</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convolutional neural networks for urban green areas semantic segmentation on Sentinel-2 data

  • Popis výsledku v původním jazyce

    Urban green areas are essential components of any urban environment, providing a wide range of uses. However, there is currently a noticeable absence of an automated tool for their land use classification. The use of urban green areas depends on their size, shape, and relationship with their surroundings, all of which are fundamental features in convolutional neural networks. Various convolutional neural network architectures (FCN, U -Net, SegNet, DeepLabv3+) were evaluated on open and widely accessible Sentinel-2 data for semantic segmentation of land cover and land use in different levels of urban green areas nomenclature and band combinations. Moreover, we compared the CNNs with random forests model as a baseline to underline the CNNs&apos; strengths. The evaluation found that convolutional neural networks are capable of the land cover and land use semantic segmentation not only on the full-band Sentinel-2 scenes but also on limited subdatasets consisting only of RGB bands. U -Net is identified as the bestperforming architecture, achieving an overall accuracy of almost 95% for a simple binary vegetation detection, 90% for the land -use task, and almost 88% for the land -use task enhanced by a distinction between high and low vegetation, while random forests reached 93%, 84%, and 81%, respectively. CNNs&apos; misclassifications were primarily identified at the edges of two neighbouring competing classes where mixed pixels appear. Data augmentation improved the model&apos;s performance in 94% of cases. However, dropout layers led to an overall accuracy decrease in more than half of the cases. Additionally, we compared the segmented urban green area with a pan -European dataset, the Coordination of Information on the Environment Land Cover - and found that the latter omits 74% of the total urban vegetation. This is mainly due to its minimal mapping unit specification. It is concluded that the most suitable approach for automated urban green areas land cover and land use semantic segmentation is the use of convolutional neural networks, from the tested architectures particularly U -Net.

  • Název v anglickém jazyce

    Convolutional neural networks for urban green areas semantic segmentation on Sentinel-2 data

  • Popis výsledku anglicky

    Urban green areas are essential components of any urban environment, providing a wide range of uses. However, there is currently a noticeable absence of an automated tool for their land use classification. The use of urban green areas depends on their size, shape, and relationship with their surroundings, all of which are fundamental features in convolutional neural networks. Various convolutional neural network architectures (FCN, U -Net, SegNet, DeepLabv3+) were evaluated on open and widely accessible Sentinel-2 data for semantic segmentation of land cover and land use in different levels of urban green areas nomenclature and band combinations. Moreover, we compared the CNNs with random forests model as a baseline to underline the CNNs&apos; strengths. The evaluation found that convolutional neural networks are capable of the land cover and land use semantic segmentation not only on the full-band Sentinel-2 scenes but also on limited subdatasets consisting only of RGB bands. U -Net is identified as the bestperforming architecture, achieving an overall accuracy of almost 95% for a simple binary vegetation detection, 90% for the land -use task, and almost 88% for the land -use task enhanced by a distinction between high and low vegetation, while random forests reached 93%, 84%, and 81%, respectively. CNNs&apos; misclassifications were primarily identified at the edges of two neighbouring competing classes where mixed pixels appear. Data augmentation improved the model&apos;s performance in 94% of cases. However, dropout layers led to an overall accuracy decrease in more than half of the cases. Additionally, we compared the segmented urban green area with a pan -European dataset, the Coordination of Information on the Environment Land Cover - and found that the latter omits 74% of the total urban vegetation. This is mainly due to its minimal mapping unit specification. It is concluded that the most suitable approach for automated urban green areas land cover and land use semantic segmentation is the use of convolutional neural networks, from the tested architectures particularly U -Net.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing Applications: Society and Environment

  • ISSN

    2352-9385

  • e-ISSN

    2352-9385

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    26

  • Strana od-do

    101238

  • Kód UT WoS článku

    001254375000001

  • EID výsledku v databázi Scopus

    2-s2.0-85195846979