Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating the Impact of Recursive Feature Elimination on Machine Learning Models for Predicting Forest Fire-Prone Zones

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10496890" target="_blank" >RIV/00216208:11310/24:10496890 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KC_xAV1ueg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KC_xAV1ueg</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/fire7120440" target="_blank" >10.3390/fire7120440</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating the Impact of Recursive Feature Elimination on Machine Learning Models for Predicting Forest Fire-Prone Zones

  • Popis výsledku v původním jazyce

    This study aimed to enhance the accuracy of forest fire susceptibility mapping (FSM) by innovatively applying recursive feature elimination (RFE) with an ensemble of machine learning models, specifically Support Vector Machine (SVM) and Random Forest (RF), to identify key fire factors. The fire zones were derived from MODIS satellite imagery from 2012 to 2017. Further validation of these data has been provided by field surveys and reviews of land records in rangelands and forests; a total of 326 fire points were determined in this study. Seventeen factors involving topography, geomorphology, meteorology, hydrology, and human factors were identified as being effective primary factors in triggering and spreading fires in the selected mountainous case study area. As a first step, the RFE models RF, Extra Trees, Gradient Boosting, and AdaBoost were used to identify important fire factors among all selected primary factors. The SVM and RF models were applied once on all factors and secondly on those derived from the RFE model as the key factors in FSM. Training and testing data were divided tenfold, and the model&apos;s performance was evaluated using cross-validation. Various metrics, including recall, precision, F1 score, accuracy, area under the curve (AUC), Matthew&apos;s correlation coefficient (MCC), and Kappa, were employed to measure the performance of the models. The assessments demonstrate that leveraging RFE models enhances the FSM results by identifying key factors and excluding unnecessary ones. Notably, the SVM model exhibits significant improvement, achieving an increase of over 10.97% in accuracy and 8.61% in AUC metrics. This improvement underscores the effectiveness of the RFE approach in enhancing the predictive performance of the SVM model.

  • Název v anglickém jazyce

    Evaluating the Impact of Recursive Feature Elimination on Machine Learning Models for Predicting Forest Fire-Prone Zones

  • Popis výsledku anglicky

    This study aimed to enhance the accuracy of forest fire susceptibility mapping (FSM) by innovatively applying recursive feature elimination (RFE) with an ensemble of machine learning models, specifically Support Vector Machine (SVM) and Random Forest (RF), to identify key fire factors. The fire zones were derived from MODIS satellite imagery from 2012 to 2017. Further validation of these data has been provided by field surveys and reviews of land records in rangelands and forests; a total of 326 fire points were determined in this study. Seventeen factors involving topography, geomorphology, meteorology, hydrology, and human factors were identified as being effective primary factors in triggering and spreading fires in the selected mountainous case study area. As a first step, the RFE models RF, Extra Trees, Gradient Boosting, and AdaBoost were used to identify important fire factors among all selected primary factors. The SVM and RF models were applied once on all factors and secondly on those derived from the RFE model as the key factors in FSM. Training and testing data were divided tenfold, and the model&apos;s performance was evaluated using cross-validation. Various metrics, including recall, precision, F1 score, accuracy, area under the curve (AUC), Matthew&apos;s correlation coefficient (MCC), and Kappa, were employed to measure the performance of the models. The assessments demonstrate that leveraging RFE models enhances the FSM results by identifying key factors and excluding unnecessary ones. Notably, the SVM model exhibits significant improvement, achieving an increase of over 10.97% in accuracy and 8.61% in AUC metrics. This improvement underscores the effectiveness of the RFE approach in enhancing the predictive performance of the SVM model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fire

  • ISSN

    2571-6255

  • e-ISSN

    2571-6255

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    24

  • Strana od-do

    440

  • Kód UT WoS článku

    001384375000001

  • EID výsledku v databázi Scopus

    2-s2.0-85213242976